VINO: The 1994 Fall Harvest

Yasuhiro Endo
James Gwertzman
Margo Seltzer
Christopher Small
Keith A. Smith
and
Diane Tang

TR-34-94
December 1994

Center for Research in Computing Technology
Harvard University
Cambridge, Massachusetts

VINO: The 1994 Fall Harvest

Yasuhiro Endo
James Gwertzman
Margo Seltzer
Christopher Small
Keith A. Smith
Diane Tang

. An Introduction to the Architecture of the VINO Kernel
Yasuhiro Endo, Margo Seltzer, Christopher Small, and Keith Smaith

. The Case for Geographical Push-Caching
James Gwertzman, Margo Seltzer

. Structuring the Kernel as a Collection of Reusable Components
Christopher Small

. Lies, Damned Lies, and File System Benchmarks
Diane Tang, Margo Seltzer

. The Case for In-Kernel Tracing
Yasuhiro Endo, Christopher Small

. Your Operating System is a Database
Keith A. Smath, Margo Seltzer

An Introduction to the Architecture of the VINO Kernel

Margo Seltzer, Yasuhiro Endo, Christopher Small, and Keith A. Smith
Harvard University
{margo,yaz,chris,keith}0@das.harvard.edu

Abstract

Current operating systems are designed to provide least-
common-denominator service to a variety of applications.
They export few internal kernel facilities, and those which
are exported have irregular interfaces. As a result, re-
source intensive applications such as database manage-
ment systems and multimedia applications, are often
poorly served by the operating system. These applica-
tions often go to great lengths to bypass normal kernel
mechanisms to achieve acceptable performance.

We describe a new kernel architecture, the VINO ker-
nel, which addresses the limitations of conventional oper-
ating systems. The VINO design is driven by three prin-
ciples:

e Application Directed Policy: the operating system
provides a collection of mechanisms, but applications
dictate the policies applied to those mechanisms.

e Kernel as Toolboz: applications can reuse the kernel’s
primitives.

o Universal Resource Access: all resources are accessed
through a single, common interface.

VINO’s power and flexibility make it an ideal platform
for research in operating systems and resource intensive
applications.

1 Introduction

Conventional operating systems provide a fixed interface
with a predefined set of policies implementing that inter-
face. The policies provided are the least common denom-
inator of those required by applications. When the policy
provided by the operating system is inappropriate for a
particular application, there are two alternatives: leave
the application to suffer with an inappropriate policy or
reimplement the kernel mechanism in user space. The
first approach leads to degraded performance; the second
leads to redundant implementations and competition for
resources between the operating system and the applica-
tion.

Inappropriate policy is only one reason that applica-
tions reimplement kernel functionality. Kernel function-
ality is often unavailable to applications. For example,
the kernel uses efficient synchronization primitives based
on fast test and set instructions, which are not available
to applications [AT&T]. Modern file systems use logging
to provide improved performance and fast recovery, but
these logging mechanisms are not available for application
use [CHANG90, CHUT92, KAZAR90, VXFS].

Today’s applications are unable to realize the potential
of today’s hardware [OUST90]. Database management
systems are the classic example of competition between
applications and the operating systems [STON81]. How-
ever, they are only one example; real-time systems, high-
speed networking applications, distributed applications,
and embedded systems all face similar problems. We call
these applications resource intensive, as they place heavy
demands on the allocation of resources, by virtue of the
size of the resources (e.g. images and video) or the tim-
ing requirements of the resources (e.g. audio-video syn-
chronization and quality of services guarantees). Today’s
systems address these problems with piecemeal solutions.

The VINO kernel focuses on three key ideas:

o Applications direct policy: the kernel controls alloca-
tion of resources, but leaves the management of those
resources to applications. For example, the kernel is
responsible for determining the allocation of physical
page frames to processes, but each process then de-
termines which virtual memory pages will be mapped
into physical memory.

o Kernel as a set of reusable tools: rather than hide
kernel mechanisms from applications, they are ex-
ported for application reuse. Many filesystems use a
database-style logging of metadata operations to im-
prove performance and simplify recovery; many ap-
plications do as well. Normally, an application needs
to reimplement the logging facility in user space. In
VINQ, this facility is available for application use.

e All resources share a common, ertensible interface:
to simplify reuse of kernel services, we support a sim-
ple hierarchical type model for resources; any facility
that works with a general resource will work with a

more specific one. A locking subsystem, written to
work with the generic resource type, will work with
any resource, be it a file, VM page, or serial port.

The VINO architecture consists of an inner kernel and
a set of application resources. The inner kernel can not be
modified by application code, but a process can override
the behavior of its application resources. The inner ker-
nel controls allocation and security decisions — it mediates
requests for shared resources, and ensures that a process
does not illegally gain access to resources.

2 Resource Types

Each VINO resource is described by its resource type.
The resource type definition includes operations (function
members, message handlers) and properties (data mem-
bers, slots). A resource type includes a default implemen-
tation for each operation (a piece of code that is run when
the operation is invoked).

The standard set of resource types include resources
such as files, directories, threads, transactions, physical
memory pages, virtual memory pages, and queues.

Resource types are arranged in a hierarchy. A subtype
inherits the interface of its supertype, and can reuse or
override its supertype’s implementation. The subtype can
add new operations and properties, extending its super-
type’s interface. It can not remove properties or opera-
tions from the inherited interface. For example, a Quick-
TimeFile resource type is defined in terms of the VideoFile
resource type (which is defined in terms of the File re-
source type). It has the same basic interface, but includes
different implementations for the encode and decode op-
erations.

A new resource type i1s added to VINO by compiling
it into the kernel. If the new resource type has the same
interface as its supertype, or the new interface does not
need to be called from existing kernel code, the new type
can be added to the kernel dynamically, as new device
drivers can be linked into Unix' on-the-fly. If the new
interface needs to be called from existing kernel code, the
kernel will need to be relinked.

3 Grafting

Application control of policy is accomplished by overrid-
ing the default implementation for an operation on a re-
source. In VINO, this is called grafting a new implementa-
tion into the kernel. For example, the PageTable resource
allocated to a process uses an LRU algorithm for its evic-
tion strategy. If an application wants to use a different
algorithm, it grafts its own implementation for the Evict
operation onto the PageTable resource for the process.

1 Unix is a trademark of X/Open.

These resource-specific implementations are modules
that are dynamically installed in the kernel. We install
this code in the kernel because the cost of frequent cross-
domain calls is too high, especially on performance-critical
paths such as when policy decisions are made [BERS89].

Unlike other extensible systems, we have not under-
taken the task of defining a new typesafe language
[BERS94, ENGL94, LISK93]. Tt is outside the scope of
our project to specify, implement,and support a new lan-
guage, and widespread acceptance of new languages in
the community, irrespective of their elegance and power,
is very low. Extensions to VINO are written in C or C++.

Techniques to ensure the safety of object code are well-
known. Each module is assigned a range of memory for its
code and data segments. Instructions are inserted into the
code to perform a base-and-bounds check on each memory
reference. This type of check detects faults in code; an
alternative technique, sandbozring [WAHBEI3], masks and
prevents faults, with an overhead lower than that of base-
and-bounds checking.

Our plan is to a trusted compiler that generates code
with either bounds checking or sandboxing to ensure code
safety. Code generated by our compiler will be marked
with a fingerprint [RABINS8I1] (a type of digital signature).
A fingerprint is computationally infeasible to forge; it en-
sures (with a very high degree of certainty) that all code
installed in the kernel comes from our trusted compiler.

Our compiler, based on compiler back-end work under-
way at Harvard, ensures that code grafted onto the op-
erating system does not read or write outside its bounds,
includes no instructions that mask interrupts, and does
not modify itself.

Even with these assurances, user-installed code may not
terminate in a timely fashion. The VINO kernel supports
limited multithreading, and grafted code can be desched-
uled by timing out. The grafted code may be ill-behaved
and never return to the application, but only the appli-
cation itself suffers; no other process is prevented from
making progress.

We must also guard against grafted code obtaining a
critical system lock and not releasing it in a reasonable
amount of time. To handle this, we attach a time-out
to critical locks, and kill a process that does not release
the lock before the time-out. Each piece of grafted code
runs in the context of a lightweight transaction that keeps
track of its allocated resources. If the process is aborted,
the corresponding transaction is aborted, and the system
is returned to a consistent state.

Unlike the external servers of Mach [ACETS6], grafting
allows small, incremental changes in kernel functionality.
If the page eviction strategy of the system is inappropri-
ate, 1t can be replaced without writing a new external

pager [MCNAM90].

4 Resource Managers and Names

A name service maps a name to a (resource manager,
storage-id) pair. The resource manager can then be asked
to map the storage-id to a file resource. A file resource
implements the expected read, write, and seek interface.

Because the name service is decoupled from the storage
system, we can put files next to each other in the names-
pace that are stored in different places. For example, in
/home/chris you find the entries time, vino-arch.tex,
and to-do. The first is be handled by a time resource
manager; when read, it responds with the current time.
The second 1s a “regular” file, stored in a local filesys-
tem. The third, when read, sends a query to the calendar
database, and return the contents of the reader’s to-do
list.

This facility is similar to one offered by Plan 9
[PRES90], although because VINO separates name man-
agement from storage management, it gains the flexibility
of allowing services to be located in the namespace where
1t makes most sense to the user. We also stray from the
idea of using the filesystem namespace as the single uni-
fying abstraction; not all resources can be easily modeled
as files, or need to be present in the file namespace.

A resource manager is an instance of the resource type
manager. A manager provides operations to create and
delete entries, and control access to its stored data. It also
implements the management of the underlying storage
(read and write operations) for its files. Subtypes of man-
ager include one implementing an FFS-style [MCKU84]
file system, a journaling file system, an NFS file system,
and a memory-based file system. Defining another sub-
type of manager (e.g. one that handles FTP requests) is
straightforward.

Local disk storage is controlled by a volume manager
which owns the physical disk; other storage managers re-
quest cylinders and tracks from it. By using a volume
manager we are able to dynamically partition the amount
of space allocated to different managers.

Stackable or layered file systems are implemented by
building on top of an existing resource manager. If an
encrypted file system is needed, a new manager is created
with read and write operations that encrypt and decrypt
data, and then delegate storage to an already existing
resource manager.

5 Fairness

One of the primary jobs of an operating system is to ar-
bitrate and abstract resource access. Some devices, such
as physical memory, are shared and preemptable; others,
such as disk space or a serial port, are not.

Some applications require service guarantees, e.g. an
application displaying real-time video using a double-

buffered display needs to be scheduled thirty-two times
a second and have physical memory large enough to hold
two copies of the displayed image. A query processor can
tune its join algorithm to the amount of physical memory
available for i1ts use, if it can assume that the memory,
once allocated, will not be taken away. Such applica-
tions can make hard resource requests, where no less than
the minimum requested resources will be allocated, and
once allocated, they will not be preempted. If a new hard
request will exceed the physical resources of the system,
VINO will not grant the request. A hard request can be
thought of as application-specified entrance criteria; if the
resource can not be allocated, the application can choose
to not proceed. In order to ensure fairness of allocation,
an application must be privileged in order to make hard
requests. Applications with less stringent requirements
make soft requests, specifying a preferred minimum re-
source allocation. If the sum of the soft requests exceeds
the system resources, VINO will arbitrate between the
requesters, sharing the resources available.

6 Kernel Tools

Operating systems are built around synchronization,
transactions, recovery, and resource sharing. The code
that implements this functionality is rarely exported to
user applications. The VINO design 1s based on the idea
that kernel tools should be exported to and used by ap-
plications.

6.1 Synchronization Primitives

The operating system’s synchronization primitives are
typically much simpler and more efficient than those
provided to user-level applications. For example, the
semaphores offered to applications by System V incur a
large number of system calls and context switches while
simple spin-locks are virtually free [SELT92]. VINO pro-
vides a kernel lock manager, accessible for application use.

In its simplest form, the lock manager provides spin-
lock synchronization on memory locations, requiring ker-
nel intervention only in the case of a contested lock. This
interface is available both to the kernel and to applica-
tions.

As the resources being locked become more complex,
so does the locking paradigm. The VINO lock manager
supports general-purpose hierarchical locking [GRAYTE].
For example, the file system typically requires locking on
block, file, directory and file system levels. In most ker-
nels, this hierarchy is enforced by convention. In VINO,
it 1s enforced by design.

We call the levels at which locking may be needed the
containment hierarchy. When a lock 1s requested from
the lock manager, the manager examines the resource’s

containment hierarchy to determine if the lock may be
granted. Applications using the lock manager can define
alternate containment hierarchies, and make them avail-
able to the lock manager (e.g. a DBMS might create a
logical containment hierarchy of database, relation, tuple,
and field). Additionally, applications can create new in-
stances of a lock manager that enforces alternate locking
protocols (e.g. alternate deadlock handling, blocking vs.
non-blocking, or new locking modes).

Finally, by integrating the kernel and user level locking
systems, concurrency can be increased. For example, a
DBMS running on a conventional Unix file system may
implement its own lock manager and issue multiple I/O
requests to the same file. Unfortunately, the Unix file sys-
tem exclusively locks the file during each 1/O operation so
that no concurrency is achieved even though the DBMS is
already ensuring the integrity of the operation. In VINO,
since the same lock manager handles both DBMS requests
and I/0O requests, locks held by the DBMS are strong
enough to perform I/O and no additional locking is re-
quired by the file system.

6.2 Log Management

VINO provides a simple log management facility that is
used by the file system and the transaction system, and
accessible to applications as well.

A log resides on one or more physical devices. It can be
created on a single device, or extended onto a second de-
vice (not necessarily of the same type as the first). For ex-
ample, a DBMS might request a log that spans both mag-
netic disk and archive media (e.g. tape or optical disk).
The kernel requests a volatile, in-memory log to support
transactions on ephemeral data, such as process structures
and buffer cache metadata. The file system might request
a log that spans non-volatile RAM (NVRAM) and disk;
file system log records would be written first to NVRAM
and later written to disk in large, efficient transfers.

The key interface to the log facility is the read /write in-
terface which provides the essential information for write-
ahead logging (i.e. a write_log function that returns a
log sequence number, and a read_log function that re-
turns records in log sequence number). Tt also supports
a synch_wal operation for write-ahead log synchronization
and a checkpoint operation for log reclamation and archiv-
ing. Aslogs can expand and contract, the partitioning be-
tween log resources and other data resources is not static,
but can change as system demands fluctuate.

6.3 Transaction Management

The VINO kernel uses transactions to maintain consis-
tency during updates to multiple related resources (e.g.
a directory and its contents). For example, the carefully
ordered writes of FFS can be reimplemented as a simpler

series of unordered writes, encapsulated in a transaction.

The ftransaction interface supports the standard
transaction-begin, transaction-commait, and transaction-
abort operations. It accepts references to appropriate log
and lock manager instances to use for each transaction.
At transaction begin, a new transaction resource is cre-
ated. This resource references the appropriate log and
lock managers and is referenced by each protected up-
date. Most kernel transactions are protected using a sim-
ple shadow-resource scheme with a log residing in main-
memory (either volatile or non-volatile depending on the
resources being protected). The mixing and matching of
logging and locking components enables VINO to support
arbitrarily complex transaction protocols.

Because the implementation of the transaction man-
ager can be incrementally modified, different transaction
semantics (e.g. as outlined in [BILI94]) can be imple-
mented as needed by applications.

6.4 Memory Management

The VINO memory management system is based on the
ideas of the Mach VM architecture, although its imple-
mentation differs considerably.

A MemoryResourceis a collection of pages. Asin Mach,
it 18 backed by a file mapped into memory. It includes
operations to read pages from and write pages to that
backing store. When a page fault takes place, VINO de-
termines which MemoryResource (if any) is assigned to
the virtual memory page containing the faulting address.
A request is made of the MemoryResource, with the ad-
dress at which to write the requested page.

Unlike a Mach pager, the MemoryResource is entirely
in the kernel; when a page fault occurs (which causes a
trap into the operating system), it is not necessary to
go back across the protection boundary from the kernel
to the user level. Also, the Mach architecture requires
that a new external pager be written for each kind of
behavior needed. VINO allows each MemoryResource to
use as much or as little of the standard implementation
as 1s appropriate; the application need only override or
augment the operations it wants to change.

The AddressMapResource is patterned after the Mach
object of the same. Each address space has an associated
AddressMapResource, which contains a mapping between
physical pages and virtual memory pages. When VINO
determines that a mapping needs to be removed (either
because of a virtual memory fault, or because the number
of physical pages assigned to the address space is being de-
creased), it invokes the ChooseVictim operation defined
on AddressMapResource. By default, ChooseVictim se-
lects the least recently used page, although an application
can replace the implementation of ChooseVictim with the
algorithm of its choice.

Note that, as in Cao’s work [CAO94], VINO retains

control over the number of mappings allocated to an ad-
dress space, but not the mappings themselves. The former
behavior is not under the control of an application (in or-
der to ensure fairness of allocation); the management of
the mappings i1s delegated to each application.

7 Related Work

Many systems have addressed the need for flexibility.
Mach [ACETS86] allowed the addition of external servers,
factoring the kernel into replaceable servers. Chorus
[ROZIB] worked to overcome the performance problems
of external servers by allowing them to be developed out-
side the kernel, and then moved into the kernel as a build
option.

Newer systems such as Aegis [ENGL94] and SPIN
[BERS94] address the granularity problems of the original
microkernel architecture by allowing small, incremental
changes to be made by loading user code into the server.
They have also addressed the issue of safety through the
use of compilation techniques.

Object-oriented toolkits are composed of a set of
reusable components (e.g. NextStep [NEXT93]) that can
be combined and specialized as needed.

Work has been done to address policy control on a
topic-by-topic basis. Scheduler Activations [ANDE91] are
a method for sharing scheduling policy between kernel
and user; Cao’s work on application-controlled file caching
[CAO94] addresses buffer cache management. The Berke-
ley Fast Filesystem [MCKU84] allows file layout to be
controlled by the setting of the rotdelay, maxcontig, and
maxbpg parameters.

System V Release 4 provides for multiple classes
of scheduling algorithms, corresponding to time-sharing
scheduling, real-time scheduling, and kernel process
scheduling. It is not possible to add new policies with-
out completely reconfiguring and relinking the operating
system, and then only if the desired scheduling algorithm
fits SVR4’s (limited) model of how a scheduler should be-
have [OLEA92].

8 Status

We are targeting the x86 and HP-PA architectures as our
initial platforms. The architectural outline 1s complete,
and we have begun prototyping the resource types, graft-
ing technology, and compilation tools at the user level.
The inner kernel (boot code and device support) is based
on 4.4BSD.

As part of our development, we plan to implement a
POSIX compatibility [TEEE93] library on top of VINO.
We are also looking into supporting BSD binaries directly,
but have not committed to it.

It is our goal that applications that do not take advan-
tage of VINO’s extensibility should run at roughly the
same speed as on a 4.xBSD system.

9 Conclusion

The VINO architecture is a simple and regular, and meets
our goals of application direction of kernel policy, reusable
kernel tools, and a common interface to all resources.

It is not necessary to define a new language in order
to safely extend kernel behavior; conventional languages
can be used, when combined with a trusted compiler and
software protection techniques.

We believe that by concentrating on the key ideas of
extensibility and reusability, we will be able to accomplish
our goals with a minimal level of distraction.

References

[AT&T]) AT&T, “System V Interface Definition, Third
Edition,” Volumes 1-3, 1989.

[ACETS86] Acetta, M., Baron, R., Bolosky, W., Golub,
D., Rashid, R., Tevanian, A., and Young, M.,
“Mach: A New Kernel Foundation for UNIX Devel-
opment”, Proceedings of the Summer Usenix Con-

ference (July 1986).

[ANDE91] Anderson, T., Bershad, B., Lazowska, E.,
Levy, H., “Scheduler Activations: Effective Kernel
Support for the User-Level Management of Paral-
lelism,” Proceedings of the Thirteenth ACM Sym-
posium on Operating System Principles, Monterey

CA, October 1991, 95-109.

[BERS89] Bershad, B., Anderson, T., Lazowska, E.|
Levy, H., “Lightweight Remote Procedure Call”,
Proceedings of the Twelfth ACM Symposium on Op-
erating System Principles, (1989).

[BERS94] Bershad, D., Chambers, C., Eggers, S., Maeda,
C., McNamee, D., Pardyak, P., Savage, S., Gun
Sirer, E.; “SPIN — An Extensible Microkernel for
Application-specific Operating System Services,”
Technical Report 94-03-03, Department of Com-
puter Science and Engineering, University of Wash-
ington, Seattle (1994).

[BILI94] Biliris, S., Dar, S., Gehani, N., Jagadish, H.
V., and Ramamritham, K., “ASSET: A System for
Supporting Extended Transactions”, Proceedings of

SIGMOD 94, Minneapolis, MN (May 1994).

[CAO94] Cao, P., Felten, E., and Li, K., “Application-
Controlled File Caching Policies” ;| Proceedings of the

1994 Winter Useniz Conference, pp. 171-182 (June
1994).

[CHANG90] Chang, A., Mergen, M., Rader, R., Roberts,
J., Porter, S., “Evolution of storage facilities in AIX
Version 3 for RISC System /6000 processors,” IBM
Journal of Research and Development 34, 1, January

1990.

[CHUT92] Chutani, S., Anderson, O., Kazar, M., Lev-
erett, B., Mason, W., Sidebotham, R., “The Episode
File System,” Proceedings of the 1992 Winter
Usenix Conference, San Francisco, CA, January

1992.

[ENGL94] Engler, D., M. F. Kaashoek, and J. O’Toole,
“The Operating System Kernel as a Secure Pro-
grammable Machine”, Proceedings of the Sizth
SIGOPS FEuropean Workshop (September 1994).

[GRAY76] Gray, J., Lorie, R., Putzolu, F., and Traiger,
I., “Granularity of Locks and Degrees of Consistency
in a Large Shared Database,” in Modeling in Data
Base Management Systems, Elsevier North Holland,
New York, pp. 365-394 (1976).

[IEEE93] TEEE, “Portable Operating System Interface
(POSIX), Part 1: System Application Program
Interface (API) [C Language]”, IEEE Standard
1003.1b, September 1993.

[KAZARIO] Kazar, M., Leverett, B., Anderson, O.
Vasilis, A., Bottos, B., Chutani, S.; Everhart, C.,
Mason, A., Tu, S., Zayas, E., “DECorum File Sys-
tem Architectural Overview,” Proceedings of the
1990 Sum- mer Usenix, Anaheim, CA, June 1990,
151-164.

[LISK93] Liskov, B., Day, M., and Shrira, M., “Dis-
tributed Object Management in Thor”, in Dis-
tributed Object Management, Morgan Kaufmann,
San Mateo, California (1993).

[MCNAM90] McNamee, D.; and Armstrong, K., “Ex-
tending the Mach External Pager Interface to Ac-
commodate User-Level Page Replacement Policies,”
Proceedings of the 1990 Useniz Mach Workshop,
Burlington, VT (1990).

[MCKU84] McKusick, M., Joy, W., Leffler, S., Fabry, R.,
“A Fast File System for UNIX,” Transactions on

Computer Systems, v. 2 n. 3, pp. 181-197 (August
1984).

[NEXT93] “NextStep 3.0 Users Manual”, Next Computer
(1993).

[OLEA92] O’Leary, K., Wood, M., Advanced System Ad-
ministration, UNIX Press, Englewood Cliffs, NJ,
1992, Chapter 8.

[OUSTI0] Ousterhout, J., “Why Aren’t Operating Sys-
tems Getting Faster as Fast as Hardware?” Pro-
ceedings of the 1990 Summer Usenix Technical Con-

ference, Anaheim, CA, June 1990, 247-256.

[PRES90] Presotto, D., Pike, R., Trickey, H., and
Thompson, K., “Plan 9, A Distributed System”,

Proceedings of the Spring 1991 FurOpen Conference
(May 1991).

[RABIN8&1] Rabin, M., “Fingerprinting by Random Poly-
nomials”, Harvard University Center for Research in
Computing Technology TR-15-81 (1981).

[ROZI88] Rozier, M., Abbrossimov, V., Armand, F.
Boule, 1., Giend, M., Guillemont, M., Herrmann,
F., Leonard, P., Langlois, S., Neuhauser, W., “The
Chorus Distributed Operating System,” Computing
Systems v. 1, n. 4 (1988).

[SELT92] Seltzer, M., Olson, M., “LIBTP: Portable,
Modular Transactions for UNIX” | Proceedings 1992
Winter Useniz Conference, San Francisco, CA, pp.

9-26 (January 1992).

[STON81] Stonebraker, M., “Operating System Support
for Database Management,” Communications of the

ACM, 7, July 1981, 412-418.

[VXFS] Unix System Laboratories, “The vxfs File System
Type,” from Advanced System Administration for
UNIX SVR4.2, 1992.

[WAHBE93] Wahbe, R., Lucco, S., Anderson, T., and
Graham, S., “Efficient Software-Based Fault Isola-
tion”, Proceedings of the 14th SOSP, Asheville, NC
(December 1993).

The Case for Geographical Push-Caching

James Gwertzman, Margo Seltzer
Harvard University
{gwertzma, margo}@das.harvard.edu

Abstract

Most existing wide-area caching schemes are client niti-
ated. Decisions on when and where to cache information
are made without the benefit of the server’s global knowl-
edge of the situation. We believe that the server should
play a role in making these caching decisions, and we pro-
pose geographical push-caching as a way of bringing the
server back into the loop. The World Wide Web is an
excellent example of a wide-area system that will ben-
efit from geographical push-caching, and we present an
architecture that allows a Web server to autonomously
replicate HTML pages.

1 Introduction

The World-Wide Web [1] operates for the most part as
a cache-less distributed system. When two neighboring
clients retrieve a document from the same server, the doc-
ument is sent twice. This is inefficient, especially consid-
ering the ease with which Web browsers allow users to
transfer large multimedia documents.

To combat this problem, some Web browsers have be-
gun to add local client caches. These prevent the same
client from transferring the same document twice. Some
networks are also beginning to add Web proxies [6, 7] that
prevent two clients on the same campus network from
transferring the same document twice.

The problem with both these schemes is that they are
myopic. A client cache does not help a neighboring com-
puter, and a campus proxy does not help a neighboring
campus. Furthermore, these caches are usually limited in
size. Disk might be cheap, but as the size of multimedia
files increases it will be impossible to cache everything. As
a result these caches will only be able to store the most
popular items even though there is still some demand for
other, less popular items.

The solution is for clients to share each other’s cache
space. The degree to which a file is replicated should be
proportional to that file’s global popularity, and clients
should retrieve files from the the nearest cache to mini-
mize network traffic. The server can satisfy both goals
by deciding when and where to cache files. Furthermore,

when the server decides where to cache a file, it can make
this decision using its knowledge of network topology and
the file’s access history for even greater network band-
width savings.

2 Motivation

Preliminary analysis of Web access logs show that a few
files on each server are responsible for most traffic from
that server. Servers can therefore save a great deal of
bandwidth by only worrying about those few files. This
fact makes server caching feasible since replicating and
distributing files puts a slight load on the server. Analy-
sis also shows that the access pattern for each file is not
geographically uniform. File requests are often clustered
geographically which implies that judicious selection of
cache sites can provide excellent bandwidth savings.

3 Architecture

There are two components to our proposed Web system:
a modified HTTP server and a replication service. The
modified server is responsible for tracking geographical
access information for its files and for accepting and of-
fering cached replicas of other files. This can be done by
modifying a proxy server, such as the CERN proxy server
[6], to accept files for replication using a modified POST
request.

The replication service keeps track of modified HTTP
servers that are willing to serve replicated files, the
amount of available free space on each server, and each
server’s average load. The replication service works with
the modified server to decide where a given file should be
cached.

We must minimize the amount of state that each Web
server stores for its files, or else we will face scalability
problems. We therefore track geographical access infor-
mation in a coarse manner. We are currently using states
and countries since these can easily be obtained from net-
work addresses.

When the demand for a file exceeds a replication thresh-
old, the server replicates it. We are using trace-driven

Clie_nts HTTP _Senrers

WWW File

Figure 1: Before file replication takes place: several clients accessing a World Wide Web file on the east coast.

simulation to determine reasonable values for the replica-
tion threshold, and we expect it to be dynamic.

The replication service decides where to replicate the
file given its access history. The goal is to pick a server to
cache the file that will minimize the amount of bandwidth
used in the future. We predict this by using the file’s
history.

Figure 1 and figure 2 illustrate the replication process
in action. Several clients from across the United States
are accessing a file on an east coast server. The east coast
server replicates the file such that network bandwidth 1is
minimized, and the file ends up on a west coast server.

The replication service maintains a list of all HT'TP
servers willing to replicate files; it must choose one of them
to cache the file. We are considering several algorithms to
determine the optimal cache location. If the service knows
the Internet’s topology it can solve the problem by finding
a good solution to the corresponding graph partitioning
problem or max-cut min-flow problem.

If only coarse grained information is available about the
Internet, such as average latency between servers (avail-
able from traceroute) a better solution is to iterate over
a representative sample of the available servers, calculat-
ing bandwidth savings for each. The service would then
replicate the file on the server that would have reduced
network bandwidth the most.

Once the primary server gives a file to another server
for caching, the primary server forgets about the other

server. The primary server’s load will drop as clients begin
to access the file from the new server. Should the primary
server’s load climb high enough that it must replicate the
file again, the primary server will choose a different server
to cache it on since the access patterns will have changed.
Likewise, if the new server’s load climbs high enough such
that 1t must replicate the file, it will be cached in yet
another place, because the access patterns for the new
server will be very different than those for the old server.

There are two issues that must still be addressed for
this scheme: file consistency and resource discovery. A
server may determine that its copy of a file is out of date
by using the get-if-modified-since HT'TP request. This is
an efficient way to both check consistency and to request
the new file in the event it has been modified, but it 1s
too expensive to use every time a file is requested.

Since weak-consistency should be acceptable for the
Web, we are using a scheme developed for the Alex [4]
file system. With the exception of dynamic pages (these
will be addressed separately) we expect the Web to obey
the same principle as FTP: the older a file 1s, the less
likely it is to be modified. Therefore, the older the file
that an HTTP server is caching, the less frequently the
HTTP server must poll to check if its copy is still up-to-
date. This is very efficient compared to checking for every
request, and the client will be able to force a poll if it 1s
essential to use the latest file.

As for resource location, there are several groups work-

Original File

Figure 2: After file replication has taken place: the file has been replicated onto a west coast server so as to minimize

network bandwidth.

ing on this problem. Until this problem is solved we are
using a technique proposed by Blaze [2], which we call
the “1-800 technique”. Clients “call” the primary server
to ask for the “server nearest you.” This is not elegant,
but it works because latency is currently more critical
than bandwidth. The expense of querying a distant server
once is amortized over the many local requests that are
thereby made possible. Eventually there will need to be
a cleaner solution so that all dependence on the original
server can be removed. Otherwise we will face scalability
and reliability problems.

4 Other Applications

Throughout this paper we have referred to HT'TP servers
and files. This was for the purposes of clarity, as well
as to provide a focus for our research. We expect our re-
sults to be applicable to any wide-area distributed system,
however; not just the World Wide Web. One application
for geographical push-caching that we have in mind is to
replicate not only data files but also services themselves.

A good example would be Archie [5], whose load prob-
lems are notorious. If Archie were to be written in a
machine-independent network-service scripting language
(e.g. Tel [8]), its code could be replicated and cached just
like a Web file. This might also be the answer to how to

cache dynamic pages, such as those generated by cgi-bin
scripts that are used to create Web pages on the fly.

5 Related Work

There is little work on caching in large-scale distributed
systems outside of distributed file systems, since only in
the past few years has the attention of the distributed
systems community turned toward globally distributed
systems such as the World-Wide Web and FTP. Several
groups are working on similar problems, but none that we
know of are working on server-initiated caching. The Har-
vest system [3] in particular incorporates an object caching
subsystem that provides a hierarchically organized means
for efficiently retrieving Internet objects such as FTP and
HTML files.

Blaze [2] has addressed caching in a large-scale system.
His research focused on distributed file systems, but can
be applied to FTP or the Web. Finally, the Alex system
[4] was designed to provide a means of caching FTP files.
Of these three systems, Blaze’s design comes closest to our
own since 1t supports replication when demand becomes
too high, and because it lets clients use any nearby cache.
It does not, however, provide the server with control over
where replicas are placed.

6 Conclusion

We do not believe that geographical push-caching should
replace client-initiated caching. These two techniques ad-
dress the same problem on two different time-scales, and
therefore are complimentary. Client-initiated caching re-
sponds quickly to local changes in a file’s popularity, but
can not alleviate a global rise in demand. Likewise, server-
initiated caching can not cope very well with sudden, lo-
calized jumps in popularity, but is best suited to handling
long-term file request trends.

We close with this reminder of why server-initiated
caching is necessary, taken from the Web home page of

the WebLouvre [9].

Note: Starting end of October 1994, we are cur-
rently experiencing severe network problems on
our 256 Kb school Internet connection. Please
be understanding! 1 am still looking for a site
willing to mirror the WebLouvre exhibit (30 Mb
in all), preferably in the USA.

References

[1] T. Berners-Lee, R. Cailliau, J-F. Groff, and B. Poller-
World-wide web: The information uni-
verse. FElectronic Networking Research, Applications

and Policy, 2(1):52-58, 1992.

mann.

[2] Matthew A. Blaze. Caching in large-scale distributed
file systems. Technical Report TR-397-92, Princeton
University, January 1993.

[3] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy,
Udi Manber, and Mich ael F. Schwartz. Harvest: A
scalable, customizable discovery and access system.
Technical Report CU-CS-732-94, University of Col-
orado, Boulder, 1994.

[4] Vincent Cate. Alex - A global filesystem. In USENIX
File Systems Workshop Proceedings, pages 1-12, Ann
Arbor, MI, May 21 - 22 1992. USENIX.

[5] Alan Emtage and Peter Deutsch. Archie - an electronic
directory service for the internet. In Proceedings of the

USENIX Winter Conference. USENIX, January 1992.

[6] Ari Luotonen and Kevin Altis. World-wide web
proxies. In Computer Networks and ISDN systems.
First International Conference on the World-Wide
Web, Elsevier Science BV, 1994. available from
"http://www.cern.ch/ PapersWWW94/ luotonen.ps’.

[7] Mosaic-x@ncsa.uiuc.edu. Using
proxy gateways. World-Wide Web. available from
*http://www.ncsa.uiuc.edu/ SDG/Software/ Mosaic/
Docs/ proxy-gateways.html’.

[8] John K. Ousterhout. Tcl: An embeddable com-
mand language. In USENIX Conference Proceed-
wngs, pages 133-146, Washington, D.C., January 22-26
1990. USENIX.

[9] Nicolas Pioch. Le weblouvre. World-Wide Web. http:
//mistral.enst.fr/ pioch/louvre/louvre.shtml.

Structuring the Kernel as a Collection of Reusable Components

Christopher Small
Harvard University
chris@das.harvard.edu

Abstract

Conventional operating systems provide high-level, black-
box services to application programs. If the services do
not fit the needs of an application, the application is out of
luck. Applications whose needs might be met by the oper-
ating system need to reimplement facilities from scratch.

Instead of providing black-box services, an operating
system should be decomposed into a set of reusable, incre-
mentally extensible components. These components are
used by the kernel to implement its services and can be
reused by applications. If only part of a service 1s needed
by an application (e.g. the buffer cache from the filesys-
tem), it is available as a separate module. This approach
is taken by the VINO kernel, under development at Har-
vard University.

1 Introduction

Conventional operating systems provide services such as
file storage, name management, and caching. As a side-
effect of implementing these services the kernel typically
implements, but does not export, fast synchronization,
simple transaction management, and logging. The in-
terface provided by the kernel allows applications to use
the exported services as-is; if the service is not appropri-
ate, the application must implement a replacement from
scratch.

At the application level, object-oriented development
methodologies are all the rage. Toolkits for developing
applications are available for user interface development,
database access, document management, and general data
structure manipulation [NEXT93]. These toolkits are
composed of reusable, extensible, and cooperative mod-
ules.

The operating system should construct its services as
such a toolkit. In order for a system structured this way
to be useful, 1t needs to be appropriately decomposed and
easily extended. This paper describes the service decom-
position and extension mechanism found in the VINO ker-
nel, under development at Harvard University.

2 Related Work

Others have examined the need for customizing operating
systems. Kiczales et al. argue that the black-box model
for operating systems hides not only crucial implemen-
tation details but crucial policy issues as well [KICZ93];
these policy decisions are not appropriate for all applica-
tions.

Anderson argues that the code in the operating systems
should be stripped to a minimum [ANDE92]. The func-
tionality of the operating system would be moved into
the application; the kernel would only be responsible for
arbitrating resource requests. Applications would have
control over policy decisions because the decisions would
be made in application code; services such as file systems
would be developed as application libraries, and could
be reused or circumvented by applications. The Aegis
exo-kernel [ENGL94] follows this approach. In contrast,
VINO leaves services in the kernel, but allows applications
to reuse them in-place.

The SPIN system [BERS94] is an extensible microker-
nel that allows applications to add code to the kernel on-
the-fly as spindles. The spindle mechanism allows services
to be constructed that are tailored for a particular appli-
cation. SPIN focuses on adaptability rather than reuse;
although application code can be placed in the kernel (for
a performance gain), the SPIN architecture is essentially
that of a conventional microkernel.

3 Decomposition

An operating system is composed of a set of services.
Some are normally exported, others hidden. For example,
the Fast Filesystem [MCKU84] is composed of physical
storage, a buffer cache, a name service, metadata synchro-
nization and management, and a recovery tool. In VINO,
where a larger service can be decomposed into potentially
useful subservices, it is; for example, VINO offers each of
the components of its filesystem as a separate service to
application programs.

3.1 File Manager

The file manager provides the standard Posix-style file
operations to its clients: read, write, seek, append, and
truncate. A file system normally builds this abstraction
on top of a physical disk using the disk; VINO interposes
a volume manager between the file manager and the raw
device. The volume manager arbitrates requests for disk
space to subsystems that require persistent storage. The
use of the volume manager allows the disk to be dynami-
cally partitioned between its clients.

Alternatively, a filesystem can be created and directed
to use a different manager for its storage, e.g.
tual memory based volume (for building a memory-based
filesystem), or a different file manager (delegating persis-
tent storage to another filesystem). The latter technique
can be used to build a layered filesystem; a compressed

a vir-

filesystem would override the default read and write op-
erations and store the compressed data on a file system
that writes 1ts data to a disk.

3.2 Cache Manager

There are several caches in the typical system. The buffer
cache 1s a cache of recently-used disk blocks; physical
memory holds recently used virtual memory pages. A
cache consists of a function that maps references to cache
entries, a backing store interface, and a replacement pol-
icy. By allowing clients to define the implementation of
each of these interfaces, the standard cache manager can
be used by VINO for both for the buffer cache and the
VM cache, or by applications managing their own data
caches. For example, a database management system can
manage its client cache by replacing the backing store in-
terface with remote requests to the database server.

3.3 Name Manager

A filesystem normally includes a subsystem that maps a
name to file reference (e.g. an i-node number, NFS file
handle, or vnode pointer). The same code can be used
for other applications that use a hierarchical namespace,
such as a database naming subsystem, the Domain Name
Service, or X11’s resource database.

3.4 Locking

The operating system’s synchronization primitives are
typically much simpler and more efficient than those pro-
vided to user-level applications. For example, obtaining
a semaphore in System V [AT&T] incurs the cost of a
system call. This overhead 1s not usually necessary; if a
lock is not contested, a user-level test-and-set instruction
can be used to obtain the lock cheaply. If it is already
held, a system call would then be made to enqueue the
lock request [SELT92].

Single level locks are not always sufficient; a lock man-
ager needs to provide general-purpose hierarchical locking
[GRAY76]. For example, the file system typically allows
locking at the block, file, directory and file system levels;
a relational database management system lock hierarchy
consists of field, tuple, relation, and database. When a
lock is requested, the lock manager must verify that no
conflicting lock is held on any other element in the hier-
archy.

In most kernels, the file system locking hierarchy is im-
plicit, buried in the code; a general lock manager must be
able to work with any user-specified hierarchy. VINO ac-
complishes this by allowing an application to define a con-
tainment hierarchy for the resources being locked. When
a lock request is made, the lock manager examines the
currently allocated locks and the client-specified contain-
ment hierarchy to determine if the new request can be
granted.

Clients need to be able to specify how the lock manager
behaves in the face of lock contention, e.g. deadlock de-
tection and resolution, blocking or non-blocking requests,
and lock types (read vs. write locks) and lock compati-
bility (multiple concurrent readers vs. single writer).

Note that by integrating the kernel and user level lock-
ing systems, concurrency can be increased. For example, a
DBMS running on a conventional UNIX! file system may
implement its own lock manager to synchronize database
access, and issue multiple I/O requests to the same file.
Unfortunately, the UNIX file system exclusively locks the
entire file during each I/O operation — no concurrency is
achieved even though the DBMS is already ensuring the
integrity of the operation. With shared lock management,
because the same lock manager handles both DBMS re-
quests and I/O requests, locks held by the DBMS are suf-
ficient to perform I/O; no additional locking is required
by the file system.

3.5 Log Manager and Recovery Manager

Several new file systems use database-style logging for
improved performance and fast recovery [CHANGO0,
CHUT92, KAZAR90, VXFS], but this facility is not ex-
ported to applications. Obviously, database management
systems use logging, but many other applications need re-
covery systems as well. For example, FrameMaker?, vi,
news readers such as rn, and email front-end tools all at-
tempt to retain and recover their state in the face of run-
time failure. Recovery code is notoriously complex, and is
often the subsystem responsible for the largest number of
system failures [SULL91]. Supporting multiple recovery
systems can only reduce total system robustness.

In VINO, a log resides on one or more physical devices.

TUNIX is a trademark of X/Open.
2FrameMaker is a registered trademark of Frame Technology
Corporation.

It can be created on a single device, or extended onto a
second device (not necessarily of the same type as the
first). A DBMS would request a log that spans both
magnetic disk and archive media (e.g. tape or optical
disk). The kernel would request a volatile, in-memory
log to support transactions on ephemeral data, such as
process structures and buffer cache metadata. The file
system would request a log that spans non-volatile RAM
and disk; file system log records would be written first
to non-volatile RAM and later written to disk in large,
efficient transfers.

The key interface to the log facility is the read/write
interface that supports write-ahead logging: a write-log
function that returns a unique identifier (a log sequence
number), and a read-log function that returns records in
log sequence order. It also supports a synch-WAL opera-
tion to synchronize the log with the data being logged, and
a checkpoint operation for log reclamation and archiving.

3.6 Transaction Manager

The kernel uses transactions to maintain consistency dur-
ing updates to multiple related resources (e.g. a directory
and its contents). For example, when the Fast Filesystem
updates metadata, it carefully orders disk writes to en-
sure the recoverability of the filesystem. In the context of
a transaction, the order of these writes would be unimpor-
tant; the transaction would commit or abort atomically.

The VINO transaction manager supports the standard
transaction-begin, transaction-commait, and transaction-
abort operations. It accepts references to appropriate log
and lock manager instances to use for each transaction.
At transaction begin, a new transaction resource is cre-
ated. This resource references the appropriate log and
lock managers and is referenced by each protected up-
date. Most kernel transactions are protected using a sim-
ple shadow-resource scheme with a log residing in main-
memory (either volatile or non-volatile, depending on the
resources being protected). The mixing and matching of
logging and locking components enables VINO to support
arbitrarily complex transaction protocols.

The transaction manager includes facilities for con-
structing extended transactions [BILI94], allowing appli-
cations to take advantage of alternative models such as
nested and split-join transactions.

4 Extensibility and Reuse

Exporting a service to applications is only half the battle;
we also need a mechanism for allowing the service to be
specialized or extended.

VINO implements each of the managers described
above as a resource type. A resource type consists of a
group of operations and properties. The operations can

be overridden by an application by g¢rafting a new im-
plementation into the kernel. The grafting process uses
sandboxring [WAHBE93] or a similar software fault isola-
tion technique to ensure that user code does not com-
promise the safety of the kernel. Code i1s written in a
conventional programming language; unlike other exten-
sible systems (e.g. SPIN [BERS94], Aegis [ENGL94] and
Thor [LISK93]), we have not undertaken the task of defin-
ing a new typesafe language. It is outside the scope of our
project to specify, implement,and support a new language,
and widespread acceptance of new languages in the com-
munity, irrespective of their elegance and power, is very
low.

Even with these assurances, user-installed code may not
terminate in a timely fashion. The VINO kernel is multi-
threaded, and grafted code that runs too long times out.
The grafted code may be ill-behaved and never return to
the application, but only the application itself suffers; no
other process is prevented from making progress.

We must also guard against grafted code obtaining a
critical system lock and not releasing it in a reasonable
amount of time. To handle this, we attach a time-out
to critical locks, and kill a process that does not release
the lock before the time-out. Each piece of grafted code
runs in the context of a lightweight transaction that keeps
track of its allocated resources. If the process terminates,
the corresponding transaction is aborted, and the system
is returned to a consistent state.

Unlike the external servers of Mach [ACETS6], grafting
allows small, incremental changes in kernel functionality.
If the page eviction strategy of the system is inappropri-
ate, 1t can be replaced without writing a new external

pager [MCNAM90].

5 Conclusions

Conventional operating systems provide services as black
boxes; where the services do not fit the needs of an ap-
plication, the application is out of luck. Instead of offer-
ing monolithic services, the kernel should be structured
to provide a collection of smaller, reusable, incrementally
extensible tools for application reuse.

References

[ACETS86] Acetta, M., Baron, R., Bolosky, W., Golub,
D., Rashid, R., Tevanian, A., and Young, M.,
“Mach: A New Kernel Foundation for UNIX Devel-
opment”, Proceedings of the Summer Usenix Con-

ference (July 1986).

[ANDE92] Anderson, T., “The Case for Application-
Specific Operating Systems”, Proceedings of the

Third Workshop on Workstation Operating Sys-
tems, 1992.

[AT&T]) AT&T, “System V Interface Definition, Third
Edition,” Volumes 1-3, 1989.

[BERS94] Bershad, D., Chambers, C., Eggers, S., Maeda,
C., McNamee, D., Pardyak, P., Savage, S., Gun
Sirer, E.; “SPIN — An Extensible Microkernel for
Application-specific Operating System Services,”
Technical Report 94-03-03, Department of Com-
puter Science and Engineering, University of Wash-
ington, Seattle (1994).

[BILI94] Biliris, S., Dar, S., Gehani, N., Jagadish, H.
V., and Ramamritham, K., “ASSET: A System for
Supporting Extended Transactions”, Proceedings of

SIGMOD 94, Minneapolis, MN (May 1994).

[CHANG90] Chang, A., Mergen, M., Rader, R., Roberts,
J., Porter, S., “Evolution of storage facilities in AIX
Version 3 for RISC System /6000 processors,” IBM
Journal of Research and Development 34, 1, January

1990.

[CHUT92] Chutani, S., Anderson, O., Kazar, M., Lev-
erett, B., Mason, W., Sidebotham, R., “The Episode
File System,” Proceedings of the 1992 Winter
Usenix Conference, San Francisco, CA, January

1992.

[ENGL94] Engler, D., M. F. Kaashoek, and J. O’Toole,
“The Operating System Kernel as a Secure Pro-
grammable Machine”, Proceedings of the Sizth
SIGOPS FEuropean Workshop (September 1994).

[GRAY76] Gray, J., Lorie, R., Putzolu, F., and Traiger,
I., “Granularity of Locks and Degrees of Consistency
in a Large Shared Database,” in Modeling in Data

Base Management Systems, Elsevier North Holland,
New York, pp. 365-394 (1976).

[KAZARIO] Kazar, M., Leverett, B., Anderson, O.
Vasilis, A., Bottos, B., Chutani, S.; Everhart, C.,
Mason, A., Tu, S., Zayas, E., “DECorum File Sys-
tem Architectural Overview,” Proceedings of the
1990 Sum- mer Usenix, Anaheim, CA, June 1990,
151-164.

[KICZ93] Kiczales, G., Lamping, J., Maeda, C., Keppel,
D., McNamee, D.; “The Need for Customizable Op-
erating Systems”, Proceedings of the Fourth Work-
shop on Workstation Operating Systems, Napa CA,
August 1993.

[LISK93] Liskov, B., Day, M., and Shrira, M., “Dis-
tributed Object Management in Thor”, in Dis-
tributed Object Management, Morgan Kaufmann,
San Mateo, California (1993).

[MCKU84] McKusick, M., Joy, W., Leffler, S., Fabry, R.,
“A Fast File System for UNIX,” Transactions on
Computer Systems, v. 2 n. 3, pp. 181-197 (August
1984).

[MCNAM90] McNamee, D.; and Armstrong, K., “Ex-
tending the Mach External Pager Interface to Ac-
commodate User-Level Page Replacement Policies,”
Proceedings of the 1990 Useniz Mach Workshop,
Burlington, VT (1990).

[NEXT93] “NextStep 3.0 Users Manual”, Next Computer
(1993).

[SELT92] Seltzer, M., Olson, M., “LIBTP: Portable,
Modular Transactions for UNIX” | Proceedings 1992
Winter Useniz Conference, San Francisco, CA, pp.

9-26 (January 1992).

[SULL91] Sullivan, M., and R. Chillarege, “Software De-
fects and Their Impact on System Availability — A
Study of Field Failures in Operating Systems”, Di-
gest 21st International Symposium on Fault Tolerant
Computing (June 1991).

[VXFS] Unix System Laboratories, “The vxfs File System
Type,” from Advanced System Administration for
UNIX SVR4.2, 1992.

[WAHBE93] Wahbe, R., Lucco, S., Anderson, T., and
Graham, S., “Efficient Software-Based Fault Isola-
tion”, Proceedings of the 14th SOSP, Asheville, NC
(December 1993).

Lies, Damned Lies, and File System Benchmarks

Diane Tang, Margo Seltzer
Harvard University, Division of Applied Sciences
{dtang, margo}@das.harvard.edu

Abstract

File system design, implementation, and performance is a
hot topic in operating systems research, but nearly all the
research in the area revolves around performance numbers
derived from inadequate benchmarks. File system bench-
marks suffer from lack of scalability, sensitivity to operat-
ing system behavior other than the file system, and fun-
damental misconceptions about what is being measured.
If file system research is to move forward, the commu-
nity needs robust, scalable, and informative file system
benchmarks. This paper presents some of the flaws in
today’s file system benchmarks, proposes a set of guide-
lines for the development of good file system benchmarks,
and discusses approaches to the creation of a compliant
benchmark.

1 Introduction

Assuming that the number of publications in an area is
an indication of research interest, file systems and dis-
tributed shared memory are among the hottest topics
in operating systems research. The 1991 SOSP confer-
ence boasted seven file systems papers out of eighteen,
1993 SOSP boasted three of twenty-one, the 1994 Summer
Usenix twelve out of twenty-seven, and the 1995 Usenix
ten out of twenty-seven.

These papers focus primarily on three issues: distribu-
tion, improved performance, and scalability. In order to
argue any of these points, researchers must demonstrate
that the file system under investigation functions cor-
rectly, provides adequate (or exceptional) performance,
and satisfies the novel claims made. Performance, in par-
ticular, is a key challenge for file systems as processor
speeds climb exponentially while I/O speed grows at a
linear rate [9]. Unfortunately, the technology for describ-
ing file system performance i1s woefully inadequate.

This paper critiques the most oft-cited file system
benchmarks and proposes a set of criteria for the estab-
lishment of successful file system benchmarks.

2 Current Benchmarks are a Dis-
grace

Benchmarks commonly used to measure file system per-
formance today suffer from several problems: lack of scal-
ability, use of a single number as a final result, measure-
ment of I/O performance rather than file system perfor-
mance, and myopia (an emphasis on incidental implemen-
tation effects that rarely determine typical user perfor-
marce).

We have examined most of the benchmarks used in re-
cent research papers and will discuss Bonnie, the Andrew
Benchmark, IOStone, and LADDIS (formerly known as
NFSSTONE and NHFSSTONE). We use the weaknesses
of these benchmarks to determine criteria for file system
benchmarks.

Bonnie consists of six micro-benchmarks designed to
measure bottlenecks in the file system [1].
sures the disk read/write throughput and random seek
time. The main shortcoming of Bonnie is that it 1s not

Bonnie mea-

really a file system benchmark, but rather a disk bench-
mark, and I/O performance cannot be equated with file
system performance. For example, Bonnie gives no indi-
cation as to how fast a file system can perform a path-
name lookup; it only tells the user how fast the system
can transfer data. Because of these limitations, Bonnie
does not indicate how well a real application will perform
on the system. Bonnie yields the directive: “Thou shalt
measure the file system if thou art reporting file system
performance.”

The Andrew Benchmark, originally developed at CMU
to compare AFS to other file systems, uses existing Unix!
utilities to create a directory hierarchy, copy files to that
hierarchy, examine the files, and then compile them [3].
At the time Andrew was developed, it might have stressed
many file systems. However, Andrew has not scaled with
time: Andrew uses a fixed-size data set, which is too
small. On most systems today, the entire data set will
fit in the buffer cache, which means that after the initial
create and copy, all data requests can be satisfied from the
cache. Furthermore, Andrew’s running time is dominated
by the compile phase, which means that Andrew 1s almost

1 Unix is a trademark of X/Open.

entirely user CPU bound, rather than either I/O bound
or system CPU bound. As a result, it is unclear what An-
drew measures today. Andrew yields the directive: “Thou
shalt make file system benchmarks scalable.”

IOStone, developed in 1990 at UC-Davis, 1s designed to
measure file system performance on a workload based on
Unix file system traces [7, 4] and IBM mainframe traces
[11, 12]. TOStone has three phases: create a file system
hierarchy, read and write the hierarchy, and delete the
hierarchy [8]. Only the read/write phase is measured to
produce one final result in IOStones per second. 10Stone
has many shortcomings. Its file system hierarchy model
is flawed: IOstone claims to emulate the workload on a
typical UNIX workstation by creating a model flat file
system hierarchy, but real file system hierarchies are rarely
flat. Furthermore, in an attempt to remove cache effects,
it reads large spacer files before the read/write phase of
the benchmark. Unfortunately, the spacer files are fixed-
size (4 MB), independent of the cache size and therefore
inadequate to flush large caches. The data set 1s also small
enough to fit in almost any buffer cache, which means
that, like Andrew, IOStone is not particularly I/O bound.
The final shortcoming of IOStone 1s that it only produces
a single result in IOStones per second. This result can
provide comparative performance information, but it does
not help the user determine what aspects of the system
need to be improved or how to improve them. IOstone
yields the directive: “Thou shalt make benchmark results
descriptive.”

The last benchmark we examine here is LADDIS, which
is still under development. LADDIS is based on NHFS-
STONE, which is based on NFSSTONE, and is designed
to measure the performance of NFS servers [10, 5, 6].
LADDIS has the potential to be a wonderful benchmark -
for NFS servers. It is scalable in the number of clients and
in the load per client, its results must be presented graph-
ically (showing how the performance of a server varies
with load), and it measures the performance of the server.
However, it is limited to NFS, and it does not give a clear
indication of how to improve system performance since
the only parameter it varies is load on the client. LAD-
DIS yields the directive: “Thou shalt make benchmarks
prescriptive.”

What we can see is that many of the existing bench-
marks have severe limitations: they do not scale, and they
do not measure the file system. As a result, they are not
particularly useful and they do not assist researchers in
understanding file system performance.

3 The Call for a New File System
Benchmark Metric

In order to design a good file system benchmark, we need
to define a measure of goodness. Chen stated several
goodness criteria for I/O benchmarks [2]. Namely, an I/0
benchmark should be:

e Prescriptive: it should point system designers to pos-
sible areas of improvement.

I/0 bound.

Scalable with advancing technology.

Comparable between different systems.

e General: applicable to a wide variety of workloads.

Tightly specified: no loopholes and clarity in what
needs to be reported.

These measures are exactly those we derive for file sys-
tem benchmarks. In fact, with the exception of I/0-
boundedness, these criteria should probably be applied
to most benchmarking methodologies.

In the case of file system benchmarking, we want to
understand the behavior of each component, e.g., disks,
caches, file system code. If we can isolate the performance
of each component of the file system, then we can identify
areas for improvement. Furthermore, if we can character-
ize an application in terms of these components, we can
determine how well a particular file system will satisfy a
particular application’s needs. For example, suppose the
task at hand 1s to optimize performance of a database
system that stores every record in a separate file. This
database will undoubtedly perform poorly on file systems
with poor lookup performance.

It is our hope that the methodology that enables us to
characterize a file system by its component performance
can be extended to characterize an operating system by
its component performance as well. Such a benchmarking
system would allow us to accurately compare subsystems
residing in different operating systems since we can accu-
rately attribute differences to the correct components.

4 A Better Benchmark

The self-scaling /O benchmark developed by Chen [2] ful-
fills the goals stated in the previous section. This bench-
mark has five parameters: the size of the overall data set,
the number of processes running concurrently, the average
size of an I/O request (to the nearest block), percentage
of operations that are reads, and percentage of operations
that are sequential (as opposed to random). The bench-
mark has two phases. It first finds the focal vector, which

is the set of five values (one for each parameter) that are
as far as possible from any drastic performance changes in
throughput as a function of that parameter. Intuitively,
the focal points are representative of “typical values,” ap-
plicable over a wide range of workloads. Once the focal
vector has been identified, the benchmark generates five
graphs: plotting throughput as a function of each param-
eter with the remaining parameters at their focal point
value. Using these graphs, Chen introduces the idea of
predictive performance. He claims that since the focal
vector is generally applicable, the shape of a graph should
be applicable even when the parameters are not at their
focal values. If a workload can be characterized in terms
of these five parameters, then the workload performance
is predicted by scaling between the five graphs.

This benchmark is scalable; tightly specified, repro-
ducible, descriptive, and prescriptive - for the 1/O sys-
tem, which does overlap with the file system. Its only
shortcoming for our purposes is that it is I/O system spe-
cific, rather than file system specific. It does not provide
feedback on any file system component other than disk
performance and buffer cache size, or what parts of the
file system need to be improved.

We are searching for a file system benchmark that ful-
fills the metrics stated above. We are considering two
possible approaches. One approach is to extend Chen’s
ideas to file systems, 1.e., to find parameters that are in-
dicative of file system performance, rather than 1/0 sys-
tem performance. The main difficulty with this approach
is in finding a set of parameters that are as plausibly in-
dependent from one another as those Chen uses to model
the T/O subsystem. Without parameter independence, we
lose the ability to predict the performance for a specific
workload, and therefore the ability to make cross-platform
comparisons as well.

A second approach is to augment Chen’s idea with
a trace-based benchmark. If we can gather file system
traces for specific applications and successfully parame-
terize them in terms of file system operations, we can
construct a file system benchmark that meets the crite-
ria proposed above. For example, assume that we can
gather file system traces of a target application set (e.g.,
a compiler, word processor, and database system). We
process the traces and derive a parameterized workload,
expressed in terms of the mix of file system operations,
their dependence upon one another, and their interarrival
times. This parameterized workload is then used to drive
the benchmark. The traces are more informative than
simply running the applications because they provide the
ability to obtain timing information for specific calls. This
benchmark can be scaled by increasing the number of pro-
cesses, but can also be scaled to different processors and
disks by altering the average interarrival time appropri-
ately.

Using the combination of these two different parts of the
benchmark, we fulfill all the metrics stated in the previous
section. The adaptation of Chen’s ideas gives us a pre-
scriptive benchmark that measures specific aspects of the
file system, while the trace-based benchmark yields cross-
platform comparisons and applicability to a wide variety
of workloads. The trace-based approach is insufficient by
itself due to the difficulty in separating out the effects of
the separate components in the file system, and thus is
not prescriptive. Both methods can be made scalable and
tightly specified.

5 Conclusion

Existing file system benchmarks are inherently flawed in
that they are not very good at measuring the performance
of a file system. We need a new benchmark that not only
gives accurate performance numbers for a file system, but
1s also helpful, scalable, and able to be widely used.

References

[1] T. Bray, Bonnie source code, NetNews posting,
1990.

[2] P. M. Chen, D. A. Patterson. “A New Approach
to I/O Benchmarks - Adaptive Evaluation, Pre-
dicted Performance”, UCB/Computer Science Depl.
92/679, University of California at Berkeley, March
1992.

[3] J. H. Howard, M. L. Kazar, S. G. Menees, D. A.
Nichols, M. Satyanarayanan, R. N. Sidebotham, M.
J. West. “Scale and Performance in a Distributed
File System” | ACM Transactions on Computer Sys-
tems 6, 1 (February 1988), 51-81.

[4] TI. Hu. “Measuring File Access Patterns in UNIX”,
Performance Evaluation Review 14, 2 (1986), 15-20.
ACM SIGMETRICS (1986).

[6] M. K. Molloy. “Anatomy of the NHFSSTONES
Benchmark”, Performance Evaluation Review 19, 4

(1992).

[6] B. Nelson, B. Lyon, M. Wittle, B. Keith, “LADDIS
- A Multi-Vendor and Vendor-Neutral NFS Bench-
mark”, UniForum Conference, (January 1992).

[7] J. K. Ousterhout, J. DaCosta, et al. “A Trace-
Driven Analysis of the UNIX 4.2 BSD File System”,
Operating Systems Review 19, 5 (December 1985),
15-24. Proceedings of the 10th Symposium on Op-
erating Systems Principles.

(8]

[9]

[10]

[11]

[12]

A. Park, J. C. Becker. “IOStone: A Synthetic File
System Benchmark” Computer Architecture News

18,2 (June 1990), 45-52.

D. A. Patterson, G. Gibson, R. H. Katz, “A Case for
Redundant Arrays of Inexpensive Disks (RAID)”,
International Conference on Management of Data

(SIGMOD), (June 1988) 109-116.
Shein, M. Callahan, P. Woodbuy. “NFSStone - A

Network File Server Performance Benchmark”, Pro-
ceedings of the USENIX Summer Technical Confer-
ence (1989) 269-275.

A. J. Smith. “Sequentiality and Prefetching in
Database Systems”, ACM Transactions on Database
Systems 3, 3 (1978), 223-247.

A.J. Smith. “Analysis of Long Term File Reference
Patterns for Application to File Migration Algo-
rithms” | TEEE Transactions on Software Engineer-

ing SE-7, No. 4 (1981), 403-417.

The Case for In-IKernel Tracing

Yasuhiro Endo
Christopher Small
Harvard University

{yaz,chris}@das.harvard.edu

Abstract

Operating systems are often criticized for providing fixed,
lowest-common-denominator policies that are inappropri-
ate for many classes of applications [6]. VINO, a new
operating system under development at Harvard Univer-
sity, is like other extensible operating systems [1][2] in that
it allows application programs to direct in-kernel policies
through a mechanism called grafting [5]. However, to take
advantage of this service and select or implement effective
kernel policies, application developers must perform the
non-trivial task of evaluating each new policy. This typi-
cally requires accurate simulation and/or tracing. There
has been little research on how to aid programmers in
this task. Many of the proposed solutions [3] rely on spe-
cially instrumented operating system kernels and/or sim-
ulation modules constructed to analyze a single decision.
In this paper, we propose an in-kernel tracing and simu-
lation mechanism designed to simplify the evaluation of
application specified policies.

1 Introduction

Extensible operating systems offer an attractive alterna-
tive to applications whose functionality or performance
are thwarted by the rigid kernel policies of conventional
operating systems. However, extensible systems also bur-
den the application with the need for increased decision
making. It is possible for applications to exhibit worse be-
havior if application specified policies are not carefully se-
lected or implemented. VINO simplifies the analysis pro-
cess by providing in-kernel tracing and simulation tools.
It does so by exploiting the VINO claim that the operat-
ing system kernel is a collection of reusable tools.

We structure the kernel to allow users to capture or in-
troduce request streams between two kernel modules, and
reuse existing kernel code to run simulations. Simulation
modules are instances of regular kernel modules except
that they do not affect any state seen by the rest of the
kernel. For example, the buffer cache simulation module
shares much of the code with the real buffer cache module
including the grafted policy code. Application program-

mers can quickly and easily evaluate the suitability of dif-
ferent policies using the tracing and simulation tools that

VINO provides.

2 Traces

The kernel is a set of modules with input ports and output
ports connected together. Modules such as the file system,
buffer cache, and device drivers have their ports connected
together, and requests are transported through these con-
nections. This architecture is similar to the use of streams
in UNIX'. In UNIX, streams facilitate the adaption of
network modules, while in VINO, our architecture sup-
ports the adaptation of nearly any module in the system
[4]. For example, the input ports of the physically ad-
dressed buffer cache module are connected to the output
port of the file system modules and the output ports are
connected to the disk driver modules. The buffer cache
module accepts requests for a block on a particular disk
and either satisfies the request internally using the cached
disk blocks or generates requests to the appropriate disk
driver modules.

VINO provides users with simple methods to alter the
flow of requests between modules. With this facility, users
can easily generate a log of requests made by a particu-
lar module by redirecting the flow of requests to both its
original destination and to a file. These logs can then
be used to reproduce a stream of requests that can be fed
into real or simulated kernel modules. In the remainder of
this paper, we refer to the captured input request stream
as a trace and the captured output request stream as a
log.

This tracing facility allows application programmers a
quick and simple way to evaluate policies. For exam-
ple, we can evaluate different buffer cache management
policies by replaying the same trace through the buffer
cache module augmented with different policy algorithms,
and counting the number of requests in the buffer cache
log (i.e. counting the number of requests in the output
stream). Because the tracing facility allows the replay of
traces, we can recreate identical workloads for different

TUNIX is a trademark of X/Open.

test runs.

3 Simulation

Some modules inside the VINO kernel can be instantiated
as simulation modules freeing programmers from the tasks
of building separate simulators. Simulation modules are
identical to real modules except that they do not modify
the global state. Therefore, simulations can run without
affecting the rest of the system. Since the simulators and
real modules share much of the code, we do not increase
code size substantially.

Modules that support simulation consist of two logical
set of states: the first is writable by both the real and
simulation instances of the module and 1s duplicated for
each instance of such modules, and the other is writable
only by the real instance of the module because the states
are shared system-wide. In case of the buffer cache mod-
ule, information such as which buffer cache page contains
a particular block of a physical disk falls into the first
category while the cached data itself falls into the second.

The simulation modules run without affecting the rest
of the system nor are they affected by other activities in
the system. This allows the simulators to be run under
many different situations. The user can evaluate appli-
cation specified policies by playing back a trace into the
simulation module and logging the output to a file. Un-
like using the real modules to evaluate policies, requests
that simulation modules generate are not transmitted to
the rest of the system. The simulations consume less sys-
tem resources. This makes it feasible for application pro-
grammers to develop applications that dynamically alter
the policies that they specify. Such programs may collect
traces as they execute and periodically apply the infor-
mation gained from tracing to select policies that may
perform better.

4 Sample Uses

4.1 Buffer Cache Management

Using VINQO’s tracing and simulation facilities, applica-
tion programmers can evaluate different buffer cache re-
placement policies using three different methods.

The first method is to run the target application in a
controlled environment and collect logs from the output
port of the buffer cache module. Given that the user
is successful in executing the application in a controlled
environment, the results obtained using this method are
the most accurate of the three, since we are only using
the tracing facility to record what is happening in the
system: the requests that buffer cache management mod-
ule receives are generated by a real program and handled
by real kernel modules. This method is not subject to

the timing problems associated with the second and third
methods.

The second method is useful when the target applica-
tions’ behaviors are difficult to reproduce. Many inter-
active programs fall into this category. For this class of
applications, traces collected from the input port of the
buffer cache module can be used to drive the experiment.
The user must first run the application interactively to
generate the trace, then while the programmer logs the re-
quests sent from the output port, the trace can be played
back into the input port of the buffer cache module as
many times as needed to evaluate different policies. Re-
sults obtained using this method are not as accurate as
those obtained using the first method. In order to prop-
erly reproduce the effects of events that are not directly
triggered by the arrival of the requests, such as the flush-
ing of dirty cache blocks, the trace must be played back
with the exact timing. However, the timing of the request
arrivals are often dependent on the behavior of the buffer
cache. A miss in the buffer cache will delay the arrival
of the next request. Therefore, if the policy being eval-
uated and the policy used when the trace was collected
are drastically different in the efficiency, the result may
be inaccurate.

The third method utilizes the simulation module as well
as the tracing facility to provide a convenient way for pro-
grammers to perform dynamic evaluation of policies. An
application may periodically collect traces from the input
port of the buffer cache module and use the trace and the
simulator to decide which policy is most appropriate for
the tasks that the application is currently performing. Be-
cause a pre-recorded trace is used to drive the simulator,
this method is also subject to the problems with accuracy
of method two. In addition, imperfections in the simula-
tor implementation may introduce additional errors.

4.2 Disk Layout Scheme Evaluation

Disks operate most efficiently when accessed sequentially.
Therefore, an ideal disk layout scheme should maximize
the sequential access of the disk and minimize the number
and the distance of seeks that is needed to satisfy a given
set of requests. We can use the tracing facility to examine
the effectiveness of different disk layout scheme.

One of the difficulties in evaluating disk layout scheme
arises from the fact that the disk layout scheme has long-
term effect. Unlike the buffer cache management policy,
which can be evaluated by running a short program, it is
impossible to perform a meaningful evaluation of a disk
layout scheme without aging the file system using the lay-
out policy being examined. The aging process involves
subjecting the algorithm to thousands of, if not millions
of file creation, deletion, expansion, and contraction. One
can create programs that artificially age the file system,
but these programs usually fails to capture what really

happens in the system under normal use.

To overcome these problems, the user can log all the
relevant requests that the file system receives over a long
period of time. The trace is then used to age the file
system. The user must make sure that the file system
is in a known and easily reproducible state (e.g. empty)
before the aging process begins.

It 1s possible to analyze the aged file system statically to
determine how much of the data is laid out sequentially,
but the user should collect traces that reflect common file
reference patterns to perform the evaluation. The use of
these traces helps reflect the fact that the effectiveness
of the layout policy depends heavily on which files are
frequently accessed and how those files are accessed. The
log of disk requests is collected from the output port of
the buffer cache, and the user can use this log to analyze
the effectiveness of the layout policy in maximizing the
sequential access and minimizing the seek.

5 Conclusion

We have identified that in order for application program-
mers to take advantage of the kernel extensibility, there
must be mechanisms to allow programmers to quickly and
easily evaluate different policies. In-kernel tracing and
simulation is a simple and general solution to this prob-
lem and can be implemented without a significant increase
in the code size by reusing the code that is already in the
kernel. We do not claim that this new facility will com-
pletely do away with the need for specialized tracing and
simulation tools, nor do we advocate turning the operat-
ing system into a simulator, but rather, we present this
as one example of how we can take advantage of existing
kernel code to create a useful tool.

References

[1] Bershad, B. C., Chambers, S. Eggers, C. Maeda, D.
McNamee, P. Pardyak, S. Savage, E. Sirer, “SPIN -
An Extensible Microkernel for Application-specific
Operating System Services”, University of Wash-
ington Technical Report 94-03-03 (February 1994).

[2] Engler, D., M. F. Kaashoek, and J. O’Toole,
“The Operating System Kernel as a Secure Pro-
grammable Machine” Proceedings of the Sizth
SIGOPS European Workshop (September 1994).

[3] Krueger, K., D. Loftesness, A. Vahdat, T. Ander-
son, “Tools for the Development of Application-
Specific Virtual Memory. Management” In Proceed-

wngs of OOPSLA 93, volume 28, pages 48-64

Richie, D. M., “A Stream Input-Output System”,
ATET Bell Laboratories Technical Journal (Oc-
tover 1984).

Small, C., “Structuring the Kernel as a Collection
of Reusable Components”, Submitted to HOTOS
V.

Stonebraker, M., “Operating System Support for
Database Management”, Communications of the

ACM, 7, July 1981, 412-418.

Your Operating System is a Database

Keith A. Smith and Margo Seltzer
Harvard University
{keith,margo}@cs.harvard.edu

Abstract

The fundamental responsibilities of an operating system
are the arbitration of access to shared hardware resources
such as the processor, main memory, and I/O devices
and the provision of a clean layer of abstraction atop
potentially complicated devices. Database management
systems provide the same functionality with respect to
data—they arbitrate access to shared data and they pro-
vide simple abstractions to facilitate the manipulation of
this data. Both operating systems and database systems
address 1ssues of synchronization, concurrency control,
buffer management, distribution, and recovery. Despite
this overlap of form and function, databases and oper-
ating systems have historically been implemented and re-
searched completely separately, and often compete, rather
than cooperate, for resources. This approach leads to re-
dundancy in implementation and worse performance than
is possible if a more integrated design and research ap-
proach is taken.

Operating systems consist of many components that
perform essentially the same task as a database, but each
of these pieces has its own i1diosyncratic interface and im-
plementation. The design and structure of operating sys-
tems can be simplified by using database structuring con-
cepts to implement a uniform interface for resource man-
agement. In this paper, we present the VINO Universal
Resource Interface, a general interface for structuring op-
erating systems, and provide examples of its use.

1 Introduction

In simplest terms, both operating systems and database
systems arbitrate access to shared resources. In the case
of an operating system, these resources are typically hard-
ware components: disks, network interfaces, serial lines,
main memory or processors. In the case of database sys-
tems, the resources are typically data: files, records, or
objects. Both types of systems perform similar tasks in
managing these resources (e.g., buffer management, syn-
chronization, disk allocation, recovery), yet they rarely
share code to do so. The database community has been
complaining about the lack of database support in oper-

ating systems for over a decade [Stone81], yet little seems
to have changed.

Although database systems have been using logging
to provide atomic updates and fast recovery for decades
[Gray78], it is only in the last five years that we have
seen the file system community accept logging as an ap-
proach for high performance and fast recovery [Ouster89,
Kazar90, Chutani92]. Similarly, database management
systems have long addressed the problems of distributed
access to shared data [Bern81]. Operating systems have
faced the same problem in providing support for dis-
tributed file systems and distributed shared memory. Un-
fortunately, much of the operating system research in
these fields has ignored solutions used by database sys-
tems, leading to wasted effort rediscovering the same solu-
tions (and the same dead ends). While operating systems
have begun adopting some database techniques, they have
done little to address the needs of database systems.

We believe that the time for operating systems re-
searchers and database researchers to work together has
long since passed. If either field is to move forward, both
must acknowledge the commonality between the two and
learn from the past. We go so far as to argue for a tighter
integration: where database and operating system func-
tionality overlap, they should endeavor to use a common
code base. More fundamentally, as researchers, we must
examine the conventional architectures of each and dis-
tinguish the gems from the flaws.

The rest of this paper is organized as follows. The next
section provides a brief overview of database functionality.
Section 3 describes a uniform interface for resource man-
agement in operating systems. In section 4 we show how
a file system might be implemented using this structur-
ing technique. Section 5 provides a brief survey of related
work, and we summarize in section 6.

2 What Do Databases Do?

A database management system (DBMS) is a repository
of data. A database used by a bank might include infor-
mation about all of the accounts at that bank, the names
and addresses of the account holders, and the amount
of money in the accounts. Clients of a database make

requests to the database when they wish to read or mod-
ify data (modifications include adding new data, deleting
data, or editing existing data). A database may have
many clients simultaneously issuing requests. In some
cases, these clients may be distributed across a network.

In most cases, modifications to the state stored by a
data base take place in the context of transactions. Trans-
actions provide four important properties, atomicity, con-
sistency, isolation, and durability. Atomicity means that
that the modifications in each transaction are applied as a
single unit. FEither they all are applied to the database, or
none of them are. The consistency property insures that
data in the database is always in a consistent state; trans-
actions are required to take the database from one con-
sistent state to another. Isolation requires that result of
concurrent transactions be indistinguishable from the re-
sult of applying the same transactions in some sequential
order. The last property, durability, insures that once a
transaction has been committed, its results are preserved
across system failures [Gray93].

The properties of isolation and consistency require that
some form of locking or concurrency control be applied
to the data residing in a database. Traditionally, this
capability has been provided through the use of locks,
with read locks supporting multiple simultaneous accesses
and write locks prohibiting concurrent access [Gray76].

To speed access to data, most databases index the
stored data items by one or more keys. Given the key, the
database can quickly retrieve the corresponding data ob-
ject by performing an associative lookup. The exact data
structures and lookup mechanisms used by a database are
transparent to the user, residing behind the abstraction
of records and keys. Frequently, the selection of indexing
structures is tuned to the application and type of data
being accessed. Balanced trees (B-trees) and hash tables
are two of the most common indexing mechanisms.

Another optimization performed by nearly all database
management systems is the buffering of frequently-used
data in memory to exploit spatial and temporal locality
in the stream of data references. This is similar to the
buffering implemented in a traditional file system buffer
cache except that databases typically implement more so-
phisticated page replacement algorithms than the simple
LRU algorithm used by most file system caches [Chou85].

3 A Universal Resource Interface

An operating system controls many resources that are
managed in the same manner as the data resources man-
aged by a DBMS. Some of these resources are visible to
the users of the operating system (e.g., directories, files),
and some are not (e.g., page tables, scheduling queues).
Each of these resource types can be viewed as a set of
similar objects. New objects can be added to the set, and

existing objects can be deleted from it. The operating sys-
tem performs lookup operations to retrieve objects from
the set, and the operating system may modify existing
objects in the set. This model of resource management
is the same as that used by database systems to manage
data objects.

A page table, for example, is simply a collection of phys-
ical memory pages indexed by their virtual addresses in
a process address space. When new pages are brought
into memory, new entries are added to the page table.
Similarly, when pages are evicted from memory, entries
are deleted from the page table. Whenever the process
references memory, the virtual address of the reference 1s
used to perform an associative lookup in the page table,
returning a physical memory page where the desired vir-
tual address is located. In most architectures, this lookup
is expedited by dedicated hardware, such as TLBs.

On a uniprocessor, the database notion of shared ver-
sus exclusive access seems to have no analog with respect
to page tables. With only one processor, only one page
can be accessed at a time, and therefore all page accesses
are exclusive. In a parallel or distributed architecture,
however, multiple processors may be using the same page
table and attempting to access the same pages concur-
rently. In such a system, memory consistency becomes an
important issue, and the processors must be coordinated
with respect to which ones read or write a given memory
page at what point. This problem is exactly analogous
to the problem faced by a DBMS in handling concurrent
requests to read and/or write the same data objects.

Although many different operating system facilities re-
quire this database model of resource management, each
one 18 typically implemented independently, resulting in
multiple implementations and interfaces for arbitrating
access to resources. This lack of a common resource man-
agement interface limits the opportunities for code re-use,
and, where only a subset of the database resource man-
agement interface is implemented, limits operating system
functionality.

VINO [Small94], a new operating system under de-
velopment at Harvard University, exploits this common
ground between operating systems and database systems.
In VINO, all resources are managed through a Univer-
sal Resource Interface (URI). This interface is explicitly
modeled after the resource management techniques used
by database management systems. The VINO URI is im-
plemented by a set of kernel modules called resource man-
agers each of which manages access to a collection of ob-
jects via a set of interface routines. This interface, which
is standardized by the URI, has functions to add or delete
objects, to retrieve objects via an associative lookup on
one or more keys, and to return modified objects to the
resource manager.

The VINO URI also includes commands that can be

used by the transaction service when beginning, commit-
ting, and rolling back transactions. For example, rather
than using careful write ordering [Ganger94] or a sepa-
rate logging facility [Chutani92, Kazar90] to maintain the
integrity of file system meta-data operations, VINO uses
a general purpose transaction mechanism. The degree of
durability conferred by the transaction mechanism may be
tailored to the requirements of the resource manager, in a
manner similar to that used by QuickSilver [Schmuck91].

4 Implementing a File System

A traditional file system exports an interface similar to
that of the universal resource interface. Thus, the file
system makes an excellent introductory example for un-
derstanding the VINO URI.

From the user’s perspective, all files are objects man-
aged by a resource manager called “the file system.” The
creat and unlink system calls correspond to adding and
deleting (respectively) a file object. Reading a file is anal-
ogous to retrieving a file (or a part of it) from the file
system for read access. A write operation acquires write
access to the file and updates the file object appropriately.

Filenames serve as keys for referencing files. A file re-
name operation performs a transaction in which the old
file is deleted, and a new file (with the same contents but
a different name) is created. Since this happens in the
context of a transaction, if the system fails during the re-
name operation, the file will either retain its old name,
or have the new name, but it will be impossible to wind
up in a state where the file has both names, or neither.
While today’s file systems also provide this functionality,
they do so using fairly complicated, special-purpose code.

Because transactions are a fundamental part of the
VINO model of resource management, the transaction fa-
cility is available to user processes for insuring the in-
tegrity file data. This allows a uniform recovery mech-
anism to be used by applications concerned about data
integrity, such as word processors and source code control
systems.

Although the file system has the outward appearance of
a single resource manager, it is actually implemented as
several distinct but cooperating resource managers. The
file system namespace is implemented by the name man-
ager, a resource manager that manages a collection of
files. File names are used to index the files. File creation
and deletion correspond to requesting an addition to or
deletion from the name manager. The open system call is
implemented by requesting a lookup from the name man-
ager and returning the corresponding file object, with read
and/or write permission, as requested in the open call.

Each file 1s implemented by a file manager, a resource
manager that manages the set of disk blocks where the
file resides. The file offset is used as a key for retriev-

ing these blocks. Note that only one file manager need
be implemented; individual files are treated as separate
instances of this manager, reusing its code with the ap-
propriate file-specific data. Reading a file is implemented
by retrieving the blocks at the requested offsets with read
permission. Writing a file is implemented, by modifying
the file blocks at the appropriate offsets.

When a file is extended, new blocks must be allocated to
it. These blocks are added to the file’s file manager. The
new blocks are allocated from a storage manager, a re-
source manager representing a disk partition. When a file
needs to allocate new blocks, it requests the blocks from
the storage manager where the file resides. The blocks
are not returned to the storage manager until the file is
truncated or deleted, preventing blocks from being simul-
taneously allocated to more than one file.

The URI model also allows us to specify a protocol for
deciding when to grant shared or exclusive access to a
file (i.e., when to allow read and/or write system calls to
overlap). The UNIX Fast File System [McKusick84] does
not permit shared access to files; no more than one read
or write request to a file 1s serviced at a time. Clearly a
one writer, multiple reader policy would permit greater
file throughput. This more complicated form of locking
is rarely implemented for file systems, however, since the
gains in concurrency are not enough to warrant the effort
of implementing it. The general-purpose resource man-
agement provided by the VINO URI allows code to be
easily shared between resource managers. Thus, it i1s only
necessary to implement one solution to the readers and
writers problem, which can then be used for managing
any resource where this model of shared access is appro-
priate.

The division of the file system into separate resource
managers also allows a variety of locking and concurrency
management schemes. The name manager can be used
to prevent conflicting read and write operations on the
granularity of entire files. This would prevent an applica-
tion from reading any part of a file that was concurrently
being written to. If decisions about shared access are left
to the file manager, concurrency can be handled on the
granularity of individual disk blocks.

5 Related Work

VINO borrows from both the database and operating sys-
tem communities for its design. The Plan 9 operating sys-
tem [Pres90] has a common interface for accessing most
services. This interface is based on the file system inter-
face found in other operating systems, and is not explicitly
designed to provide resource management.

QuickSilver [Schmuck91] is a microkernel operating sys-
tem that uses transactions as a fundamental primitive,
however they do not extend the use of this transaction

mechanism to applications.

There are a number of file systems [Chutani92,
Chang90] that have incorporated logging to insure the
integrity of their meta-data. Unfortunately these file sys-
tems do not export this transaction mechanism to user
applications, or to other parts of the operating system
kernel, which are therefore forced to implement their own
recovery mechanisms.

Inversion [Olson93] is a file system built on top of the
POSTGRES [Stone87] database management system. In-
version provides a transaction-based recovery mechanism
for file data as well as for file system meta-data. It also
allows users to define new files types and functions for op-
erating on them. Users of Inversion can use the underlying
database to issue queries on the file system’s contents and
meta-data.

VINO is not unique in separating naming from the file
storage service. The Amoeba operating system [Mullen90]
also divides traditional file system functionality along
these lines, providing a directory service that maps names
to capabilities for file objects. The file objects are man-
aged by a separate service called the bullet service.

6 Conclusion

Traditional databases and operating systems use a vari-
ety of similar techniques for solving resource management
problems. Over time, databases have evolved a uniform
model for manipulating the range of resources they need
to manage. Operating systems, in contrast, still use a
variety of ad hoc mechanisms and interfaces for resource
management. We feel that the access method model for
resource management developed for use in databases is
also appropriate for operating system resource manage-
ment.

The VINO operating system is designed to explore
this common ground between operating systems and
databases. The VINO Universal Resource Interface pro-
vides a uniform interface for resource management mod-
eled after the access methods used by databases.

References
[Berng1] Philip A. Bernstein, Nathan Good-
man, “Concurrency Control in Distributed
Database Systems,” ACM Computing Sur-
veys, Vol. 13, No. 2, June 1981, pp. 185—
221.

[Chang90] Chang, A., Mergen, M., Rader, R,
Roberts, J., Porter, S., “Evolution of stor-
age facilities in AIX Version 3 for RISC
System /6000 processors,” IBM Journal of

[Chou85)

[Chutani92]

[Ganger94]

[Gray76]

[Gray78]

[Gray93]

[Kazar90)]

[McKusick84]

[Mullen90]

Research and Development, Vol. 34, No. 1,
January 1990.

Chou, Hong-Tai, DeWitt, David, “An Eval-
uation of Buffer Management Strategies for
Relational Database Systems,” Proceedings
of the Eleventh International Conference
on Very Large Database, August 1985, pp.
127-141.

Chutani, S., Anderson, O., Kazar, M., Lev-
erett, B., Mason, W., Sidebotham, R.,
“The Episode File System,” Proceedings of
the 1992 Winter Useniz Conference, San
Francisco, CA, January 1992.

Ganger, G., Patt, Y., “Metadata Update
Performance in File Systems,” Proceedings
of the First Usemiz Sympositum on Oper-
ating System Design and Implementation,
Monterey, CA, November, 1994, pp. 49-60.

Gray, J., Lorie, R., Putzolu, F.,
Traiger, 1., “Granularity of locks and de-
grees of consistency in a large shared
data base,” Modeling in Data Base Man-
agement Systems, Elsevier North Holland,
New York, 365-394.

and

Gray, J., “Notes on Database Operating
Systems—An Advanced Course,” Springer
Verlag Lecture Notes in Computer Science,

Volumne 60 1978.

Gray, J., Reuter, A., Transaction Pro-
cessing: Concepts and Techniques, Morgan
Kaufmann Publishers, San Francisco CA,

1993.

Kazar, M., Leverett, B., Anderson, O.,
Vasilis, A., Bottos, B., Chutani, S., Ev-
erhart, C., Mason, A., Tu, S., Zayas,
E., “DECorum File System Architectural
Overview,” Proceedings of the 1990 Sum-
mer Useniz, Anaheim, CA, June 1990, pp.
151-164.

Marshall Kirk McKusick, William Joy,
Sam Leffler, and R. S. Fabry, “A Fast File
System for UNIX,” ACM Transactions on
Computer Systems, Vol. 2, No. 3, August
1984, pp. 181-197.

Sape J. Mullender, Guido van Rossum, An-
drew S. Tannenbaum, Robbert van Re-
nesse, and Hans van Staveren, “Amoeba—
A Distributed Operating System for the
1990s,” IEEE Computer, May 1990, pp. 44—
53.

[Olson93]

[Ouster89]

[Pres90]

[Schmuck91]

[Small94]

[Stone81]

[Stone8T]

Michael A. Olson, “The Design and Imple-
mentation of the Inversion File System,”
Proceedings of the 1993 Wainter Usemz
Conference, San Diego, CA, January 1993,
pp- 205-217.

Ousterhout, J., Douglis, F., “Beating the
I/O Bottleneck: A Case for Log-structured
File Systems,” Operating Systems Review
23, 1, January 1989, 11-27.

Presotto, D., Pike, R., Trickey, H., and
Thompson, K., “Plan 9, a Distributed Sys-
tem,” Proceedings of the Spring 1991 Fu-
rOpen Conference, Many 1991.

Frank Schmuck, Jim Wyllie, “Experiences
with Transactions in QuickSilver,” Proceed-
wmngs of the 13th Symposium on Operating
System Principles, Pacific Grove, CA, Oc-
tober 1991.

Chris Small, Margo Seltzer, “VINO: An
Integrated Platform for Operating System
and Database Research,” Harvard Com-
puter Science Technical Report TR-30-94,
1994.

Michael Stonebraker, “Operating System
Support for Database Management,” Com-
munications of the ACM, Vol. 24, No. 7,
July 1981, pp 412-418.

Michael Stonebraker, “The Design of the
POSTGRES Storage System,” Proceed-
wngs 13th International Conference on Very
Large Data Bases, Brighton, England,
September 1987, pp. 289-300.

