
VINO: The 1994 Fall HarvestYasuhiro EndoJames GwertzmanMargo SeltzerChristopher SmallKeith A. SmithandDiane TangTR-34-94December 1994
Center for Research in Computing TechnologyHarvard UniversityCambridge, Massachusetts

VINO: The 1994 Fall HarvestYasuhiro EndoJames GwertzmanMargo SeltzerChristopher SmallKeith A. SmithDiane Tang1. An Introduction to the Architecture of the VINO KernelYasuhiro Endo, Margo Seltzer, Christopher Small, and Keith Smith2. The Case for Geographical Push-CachingJames Gwertzman, Margo Seltzer3. Structuring the Kernel as a Collection of Reusable ComponentsChristopher Small4. Lies, Damned Lies, and File System BenchmarksDiane Tang, Margo Seltzer5. The Case for In-Kernel TracingYasuhiro Endo, Christopher Small6. Your Operating System is a DatabaseKeith A. Smith, Margo Seltzer
1

An Introduction to the Architecture of the VINO KernelMargo Seltzer, Yasuhiro Endo, Christopher Small, and Keith A. SmithHarvard Universityfmargo,yaz,chris,keithg@das.harvard.eduAbstractCurrent operating systems are designed to provide least-common-denominator service to a variety of applications.They export few internal kernel facilities, and those whichare exported have irregular interfaces. As a result, re-source intensive applications such as database manage-ment systems and multimedia applications, are oftenpoorly served by the operating system. These applica-tions often go to great lengths to bypass normal kernelmechanisms to achieve acceptable performance.We describe a new kernel architecture, the VINO ker-nel, which addresses the limitations of conventional oper-ating systems. The VINO design is driven by three prin-ciples:� Application Directed Policy: the operating systemprovides a collection of mechanisms, but applicationsdictate the policies applied to those mechanisms.� Kernel as Toolbox: applications can reuse the kernel'sprimitives.� Universal Resource Access: all resources are accessedthrough a single, common interface.VINO's power and exibility make it an ideal platformfor research in operating systems and resource intensiveapplications.1 IntroductionConventional operating systems provide a �xed interfacewith a prede�ned set of policies implementing that inter-face. The policies provided are the least common denom-inator of those required by applications. When the policyprovided by the operating system is inappropriate for aparticular application, there are two alternatives: leavethe application to su�er with an inappropriate policy orreimplement the kernel mechanism in user space. The�rst approach leads to degraded performance; the secondleads to redundant implementations and competition forresources between the operating system and the applica-tion.

Inappropriate policy is only one reason that applica-tions reimplement kernel functionality. Kernel function-ality is often unavailable to applications. For example,the kernel uses e�cient synchronization primitives basedon fast test and set instructions, which are not availableto applications [AT&T]. Modern �le systems use loggingto provide improved performance and fast recovery, butthese logging mechanisms are not available for applicationuse [CHANG90, CHUT92, KAZAR90, VXFS].Today's applications are unable to realize the potentialof today's hardware [OUST90]. Database managementsystems are the classic example of competition betweenapplications and the operating systems [STON81]. How-ever, they are only one example; real-time systems, high-speed networking applications, distributed applications,and embedded systems all face similar problems. We callthese applications resource intensive, as they place heavydemands on the allocation of resources, by virtue of thesize of the resources (e.g. images and video) or the tim-ing requirements of the resources (e.g. audio-video syn-chronization and quality of services guarantees). Today'ssystems address these problems with piecemeal solutions.The VINO kernel focuses on three key ideas:� Applications direct policy: the kernel controls alloca-tion of resources, but leaves the management of thoseresources to applications. For example, the kernel isresponsible for determining the allocation of physicalpage frames to processes, but each process then de-termines which virtual memory pages will be mappedinto physical memory.� Kernel as a set of reusable tools: rather than hidekernel mechanisms from applications, they are ex-ported for application reuse. Many �lesystems use adatabase-style logging of metadata operations to im-prove performance and simplify recovery; many ap-plications do as well. Normally, an application needsto reimplement the logging facility in user space. InVINO, this facility is available for application use.� All resources share a common, extensible interface:to simplify reuse of kernel services, we support a sim-ple hierarchical type model for resources; any facilitythat works with a general resource will work with a1

more speci�c one. A locking subsystem, written towork with the generic resource type, will work withany resource, be it a �le, VM page, or serial port.The VINO architecture consists of an inner kernel anda set of application resources. The inner kernel can not bemodi�ed by application code, but a process can overridethe behavior of its application resources. The inner ker-nel controls allocation and security decisions { it mediatesrequests for shared resources, and ensures that a processdoes not illegally gain access to resources.2 Resource TypesEach VINO resource is described by its resource type.The resource type de�nition includes operations (functionmembers, message handlers) and properties (data mem-bers, slots). A resource type includes a default implemen-tation for each operation (a piece of code that is run whenthe operation is invoked).The standard set of resource types include resourcessuch as �les, directories, threads, transactions, physicalmemory pages, virtual memory pages, and queues.Resource types are arranged in a hierarchy. A subtypeinherits the interface of its supertype, and can reuse oroverride its supertype's implementation. The subtype canadd new operations and properties, extending its super-type's interface. It can not remove properties or opera-tions from the inherited interface. For example, a Quick-TimeFile resource type is de�ned in terms of the VideoFileresource type (which is de�ned in terms of the File re-source type). It has the same basic interface, but includesdi�erent implementations for the encode and decode op-erations.A new resource type is added to VINO by compilingit into the kernel. If the new resource type has the sameinterface as its supertype, or the new interface does notneed to be called from existing kernel code, the new typecan be added to the kernel dynamically, as new devicedrivers can be linked into Unix1 on-the-y. If the newinterface needs to be called from existing kernel code, thekernel will need to be relinked.3 GraftingApplication control of policy is accomplished by overrid-ing the default implementation for an operation on a re-source. In VINO, this is called grafting a new implementa-tion into the kernel. For example, the PageTable resourceallocated to a process uses an LRU algorithm for its evic-tion strategy. If an application wants to use a di�erentalgorithm, it grafts its own implementation for the Evictoperation onto the PageTable resource for the process.1Unix is a trademark of X/Open.

These resource-speci�c implementations are modulesthat are dynamically installed in the kernel. We installthis code in the kernel because the cost of frequent cross-domain calls is too high, especially on performance-criticalpaths such as when policy decisions are made [BERS89].Unlike other extensible systems, we have not under-taken the task of de�ning a new typesafe language[BERS94, ENGL94, LISK93]. It is outside the scope ofour project to specify, implement,and support a new lan-guage, and widespread acceptance of new languages inthe community, irrespective of their elegance and power,is very low. Extensions to VINO are written in C or C++.Techniques to ensure the safety of object code are well-known. Each module is assigned a range of memory for itscode and data segments. Instructions are inserted into thecode to perform a base-and-bounds check on each memoryreference. This type of check detects faults in code; analternative technique, sandboxing [WAHBE93], masks andprevents faults, with an overhead lower than that of base-and-bounds checking.Our plan is to a trusted compiler that generates codewith either bounds checking or sandboxing to ensure codesafety. Code generated by our compiler will be markedwith a �ngerprint [RABIN81] (a type of digital signature).A �ngerprint is computationally infeasible to forge; it en-sures (with a very high degree of certainty) that all codeinstalled in the kernel comes from our trusted compiler.Our compiler, based on compiler back-end work under-way at Harvard, ensures that code grafted onto the op-erating system does not read or write outside its bounds,includes no instructions that mask interrupts, and doesnot modify itself.Even with these assurances, user-installed code may notterminate in a timely fashion. The VINO kernel supportslimited multithreading, and grafted code can be desched-uled by timing out. The grafted code may be ill-behavedand never return to the application, but only the appli-cation itself su�ers; no other process is prevented frommaking progress.We must also guard against grafted code obtaining acritical system lock and not releasing it in a reasonableamount of time. To handle this, we attach a time-outto critical locks, and kill a process that does not releasethe lock before the time-out. Each piece of grafted coderuns in the context of a lightweight transaction that keepstrack of its allocated resources. If the process is aborted,the corresponding transaction is aborted, and the systemis returned to a consistent state.Unlike the external servers of Mach [ACET86], graftingallows small, incremental changes in kernel functionality.If the page eviction strategy of the system is inappropri-ate, it can be replaced without writing a new externalpager [MCNAM90].2

4 Resource Managers and NamesA name service maps a name to a (resource manager,storage-id) pair. The resource manager can then be askedto map the storage-id to a �le resource. A �le resourceimplements the expected read, write, and seek interface.Because the name service is decoupled from the storagesystem, we can put �les next to each other in the names-pace that are stored in di�erent places. For example, in/home/chris you �nd the entries time, vino-arch.tex,and to-do. The �rst is be handled by a time resourcemanager; when read, it responds with the current time.The second is a \regular" �le, stored in a local �lesys-tem. The third, when read, sends a query to the calendardatabase, and return the contents of the reader's to-dolist.This facility is similar to one o�ered by Plan 9[PRES90], although because VINO separates name man-agement from storage management, it gains the exibilityof allowing services to be located in the namespace whereit makes most sense to the user. We also stray from theidea of using the �lesystem namespace as the single uni-fying abstraction; not all resources can be easily modeledas �les, or need to be present in the �le namespace.A resource manager is an instance of the resource typemanager. A manager provides operations to create anddelete entries, and control access to its stored data. It alsoimplements the management of the underlying storage(read and write operations) for its �les. Subtypes of man-ager include one implementing an FFS-style [MCKU84]�le system, a journaling �le system, an NFS �le system,and a memory-based �le system. De�ning another sub-type of manager (e.g. one that handles FTP requests) isstraightforward.Local disk storage is controlled by a volume managerwhich owns the physical disk; other storage managers re-quest cylinders and tracks from it. By using a volumemanager we are able to dynamically partition the amountof space allocated to di�erent managers.Stackable or layered �le systems are implemented bybuilding on top of an existing resource manager. If anencrypted �le system is needed, a new manager is createdwith read and write operations that encrypt and decryptdata, and then delegate storage to an already existingresource manager.5 FairnessOne of the primary jobs of an operating system is to ar-bitrate and abstract resource access. Some devices, suchas physical memory, are shared and preemptable; others,such as disk space or a serial port, are not.Some applications require service guarantees, e.g. anapplication displaying real-time video using a double-

bu�ered display needs to be scheduled thirty-two timesa second and have physical memory large enough to holdtwo copies of the displayed image. A query processor cantune its join algorithm to the amount of physical memoryavailable for its use, if it can assume that the memory,once allocated, will not be taken away. Such applica-tions can make hard resource requests, where no less thanthe minimum requested resources will be allocated, andonce allocated, they will not be preempted. If a new hardrequest will exceed the physical resources of the system,VINO will not grant the request. A hard request can bethought of as application-speci�ed entrance criteria; if theresource can not be allocated, the application can chooseto not proceed. In order to ensure fairness of allocation,an application must be privileged in order to make hardrequests. Applications with less stringent requirementsmake soft requests, specifying a preferred minimum re-source allocation. If the sum of the soft requests exceedsthe system resources, VINO will arbitrate between therequesters, sharing the resources available.6 Kernel ToolsOperating systems are built around synchronization,transactions, recovery, and resource sharing. The codethat implements this functionality is rarely exported touser applications. The VINO design is based on the ideathat kernel tools should be exported to and used by ap-plications.6.1 Synchronization PrimitivesThe operating system's synchronization primitives aretypically much simpler and more e�cient than thoseprovided to user-level applications. For example, thesemaphores o�ered to applications by System V incur alarge number of system calls and context switches whilesimple spin-locks are virtually free [SELT92]. VINO pro-vides a kernel lock manager, accessible for application use.In its simplest form, the lock manager provides spin-lock synchronization on memory locations, requiring ker-nel intervention only in the case of a contested lock. Thisinterface is available both to the kernel and to applica-tions.As the resources being locked become more complex,so does the locking paradigm. The VINO lock managersupports general-purpose hierarchical locking [GRAY76].For example, the �le system typically requires locking onblock, �le, directory and �le system levels. In most ker-nels, this hierarchy is enforced by convention. In VINO,it is enforced by design.We call the levels at which locking may be needed thecontainment hierarchy. When a lock is requested fromthe lock manager, the manager examines the resource's3

containment hierarchy to determine if the lock may begranted. Applications using the lock manager can de�nealternate containment hierarchies, and make them avail-able to the lock manager (e.g. a DBMS might create alogical containment hierarchy of database, relation, tuple,and �eld). Additionally, applications can create new in-stances of a lock manager that enforces alternate lockingprotocols (e.g. alternate deadlock handling, blocking vs.non-blocking, or new locking modes).Finally, by integrating the kernel and user level lockingsystems, concurrency can be increased. For example, aDBMS running on a conventional Unix �le system mayimplement its own lock manager and issue multiple I/Orequests to the same �le. Unfortunately, the Unix �le sys-tem exclusively locks the �le during each I/O operation sothat no concurrency is achieved even though the DBMS isalready ensuring the integrity of the operation. In VINO,since the same lock manager handles both DBMS requestsand I/O requests, locks held by the DBMS are strongenough to perform I/O and no additional locking is re-quired by the �le system.6.2 Log ManagementVINO provides a simple log management facility that isused by the �le system and the transaction system, andaccessible to applications as well.A log resides on one or more physical devices. It can becreated on a single device, or extended onto a second de-vice (not necessarily of the same type as the �rst). For ex-ample, a DBMS might request a log that spans both mag-netic disk and archive media (e.g. tape or optical disk).The kernel requests a volatile, in-memory log to supporttransactions on ephemeral data, such as process structuresand bu�er cache metadata. The �le system might requesta log that spans non-volatile RAM (NVRAM) and disk;�le system log records would be written �rst to NVRAMand later written to disk in large, e�cient transfers.The key interface to the log facility is the read/write in-terface which provides the essential information for write-ahead logging (i.e. a write log function that returns alog sequence number, and a read log function that re-turns records in log sequence number). It also supportsa synch wal operation for write-ahead log synchronizationand a checkpoint operation for log reclamation and archiv-ing. As logs can expand and contract, the partitioning be-tween log resources and other data resources is not static,but can change as system demands uctuate.6.3 Transaction ManagementThe VINO kernel uses transactions to maintain consis-tency during updates to multiple related resources (e.g.a directory and its contents). For example, the carefullyordered writes of FFS can be reimplemented as a simpler

series of unordered writes, encapsulated in a transaction.The transaction interface supports the standardtransaction-begin, transaction-commit, and transaction-abort operations. It accepts references to appropriate logand lock manager instances to use for each transaction.At transaction begin, a new transaction resource is cre-ated. This resource references the appropriate log andlock managers and is referenced by each protected up-date. Most kernel transactions are protected using a sim-ple shadow-resource scheme with a log residing in main-memory (either volatile or non-volatile depending on theresources being protected). The mixing and matching oflogging and locking components enables VINO to supportarbitrarily complex transaction protocols.Because the implementation of the transaction man-ager can be incrementally modi�ed, di�erent transactionsemantics (e.g. as outlined in [BILI94]) can be imple-mented as needed by applications.6.4 Memory ManagementThe VINO memory management system is based on theideas of the Mach VM architecture, although its imple-mentation di�ers considerably.AMemoryResource is a collection of pages. As in Mach,it is backed by a �le mapped into memory. It includesoperations to read pages from and write pages to thatbacking store. When a page fault takes place, VINO de-termines which MemoryResource (if any) is assigned tothe virtual memory page containing the faulting address.A request is made of the MemoryResource, with the ad-dress at which to write the requested page.Unlike a Mach pager, the MemoryResource is entirelyin the kernel; when a page fault occurs (which causes atrap into the operating system), it is not necessary togo back across the protection boundary from the kernelto the user level. Also, the Mach architecture requiresthat a new external pager be written for each kind ofbehavior needed. VINO allows each MemoryResource touse as much or as little of the standard implementationas is appropriate; the application need only override oraugment the operations it wants to change.The AddressMapResource is patterned after the Machobject of the same. Each address space has an associatedAddressMapResource, which contains a mapping betweenphysical pages and virtual memory pages. When VINOdetermines that a mapping needs to be removed (eitherbecause of a virtual memory fault, or because the numberof physical pages assigned to the address space is being de-creased), it invokes the ChooseVictim operation de�nedon AddressMapResource. By default, ChooseVictim se-lects the least recently used page, although an applicationcan replace the implementation of ChooseVictim with thealgorithm of its choice.Note that, as in Cao's work [CAO94], VINO retains4

control over the number of mappings allocated to an ad-dress space, but not the mappings themselves. The formerbehavior is not under the control of an application (in or-der to ensure fairness of allocation); the management ofthe mappings is delegated to each application.7 Related WorkMany systems have addressed the need for exibility.Mach [ACET86] allowed the addition of external servers,factoring the kernel into replaceable servers. Chorus[ROZI88] worked to overcome the performance problemsof external servers by allowing them to be developed out-side the kernel, and then moved into the kernel as a buildoption.Newer systems such as Aegis [ENGL94] and SPIN[BERS94] address the granularity problems of the originalmicrokernel architecture by allowing small, incrementalchanges to be made by loading user code into the server.They have also addressed the issue of safety through theuse of compilation techniques.Object-oriented toolkits are composed of a set ofreusable components (e.g. NextStep [NEXT93]) that canbe combined and specialized as needed.Work has been done to address policy control on atopic-by-topic basis. Scheduler Activations [ANDE91] area method for sharing scheduling policy between kerneland user; Cao's work on application-controlled �le caching[CAO94] addresses bu�er cache management. The Berke-ley Fast Filesystem [MCKU84] allows �le layout to becontrolled by the setting of the rotdelay, maxcontig, andmaxbpg parameters.System V Release 4 provides for multiple classesof scheduling algorithms, corresponding to time-sharingscheduling, real-time scheduling, and kernel processscheduling. It is not possible to add new policies with-out completely recon�guring and relinking the operatingsystem, and then only if the desired scheduling algorithm�ts SVR4's (limited) model of how a scheduler should be-have [OLEA92].8 StatusWe are targeting the x86 and HP-PA architectures as ourinitial platforms. The architectural outline is complete,and we have begun prototyping the resource types, graft-ing technology, and compilation tools at the user level.The inner kernel (boot code and device support) is basedon 4.4BSD.As part of our development, we plan to implement aPOSIX compatibility [IEEE93] library on top of VINO.We are also looking into supporting BSD binaries directly,but have not committed to it.

It is our goal that applications that do not take advan-tage of VINO's extensibility should run at roughly thesame speed as on a 4.xBSD system.9 ConclusionThe VINO architecture is a simple and regular, and meetsour goals of application direction of kernel policy, reusablekernel tools, and a common interface to all resources.It is not necessary to de�ne a new language in orderto safely extend kernel behavior; conventional languagescan be used, when combined with a trusted compiler andsoftware protection techniques.We believe that by concentrating on the key ideas ofextensibility and reusability, we will be able to accomplishour goals with a minimal level of distraction.References[AT&T] AT&T, \System V Interface De�nition, ThirdEdition," Volumes 1{3, 1989.[ACET86] Acetta, M., Baron, R., Bolosky, W., Golub,D., Rashid, R., Tevanian, A., and Young, M.,\Mach: A New Kernel Foundation for UNIX Devel-opment", Proceedings of the Summer Usenix Con-ference (July 1986).[ANDE91] Anderson, T., Bershad, B., Lazowska, E.,Levy, H., \Scheduler Activations: E�ective KernelSupport for the User-Level Management of Paral-lelism," Proceedings of the Thirteenth ACM Sym-posium on Operating System Principles, MontereyCA, October 1991, 95-109.[BERS89] Bershad, B., Anderson, T., Lazowska, E.,Levy, H., \Lightweight Remote Procedure Call",Proceedings of the Twelfth ACM Symposium on Op-erating System Principles, (1989).[BERS94] Bershad, D., Chambers, C., Eggers, S., Maeda,C., McNamee, D., Pardyak, P., Savage, S., GunSirer, E., \SPIN { An Extensible Microkernel forApplication-speci�c Operating System Services,"Technical Report 94-03-03, Department of Com-puter Science and Engineering, University of Wash-ington, Seattle (1994).[BILI94] Biliris, S., Dar, S., Gehani, N., Jagadish, H.V., and Ramamritham, K., \ASSET: A System forSupporting Extended Transactions", Proceedings ofSIGMOD 94, Minneapolis, MN (May 1994).[CAO94] Cao, P., Felten, E., and Li, K., \Application-Controlled File Caching Policies", Proceedings of the5

1994 Winter Usenix Conference, pp. 171-182 (June1994).[CHANG90] Chang, A., Mergen, M., Rader, R., Roberts,J., Porter, S., \Evolution of storage facilities in AIXVersion 3 for RISC System/6000 processors," IBMJournal of Research and Development 34, 1, January1990.[CHUT92] Chutani, S., Anderson, O., Kazar, M., Lev-erett, B., Mason, W., Sidebotham, R., \The EpisodeFile System," Proceedings of the 1992 WinterUsenix Conference, San Francisco, CA, January1992.[ENGL94] Engler, D., M. F. Kaashoek, and J. O'Toole,\The Operating System Kernel as a Secure Pro-grammable Machine", Proceedings of the SixthSIGOPS European Workshop (September 1994).[GRAY76] Gray, J., Lorie, R., Putzolu, F., and Traiger,I., \Granularity of Locks and Degrees of Consistencyin a Large Shared Database," in Modeling in DataBase Management Systems, Elsevier North Holland,New York, pp. 365-394 (1976).[IEEE93] IEEE, \Portable Operating System Interface(POSIX), Part 1: System Application ProgramInterface (API) [C Language]", IEEE Standard1003.1b, September 1993.[KAZAR90] Kazar, M., Leverett, B., Anderson, O.,Vasilis, A., Bottos, B., Chutani, S., Everhart, C.,Mason, A., Tu, S., Zayas, E., \DECorum File Sys-tem Architectural Overview," Proceedings of the1990 Sum- mer Usenix, Anaheim, CA, June 1990,151-164.[LISK93] Liskov, B., Day, M., and Shrira, M., \Dis-tributed Object Management in Thor", in Dis-tributed Object Management, Morgan Kaufmann,San Mateo, California (1993).[MCNAM90] McNamee, D., and Armstrong, K., \Ex-tending the Mach External Pager Interface to Ac-commodate User-Level Page Replacement Policies,"Proceedings of the 1990 Usenix Mach Workshop,Burlington, VT (1990).[MCKU84] McKusick, M., Joy, W., Le�er, S., Fabry, R.,\A Fast File System for UNIX," Transactions onComputer Systems, v. 2 n. 3, pp. 181-197 (August1984).[NEXT93] \NextStep 3.0 Users Manual", Next Computer(1993).

[OLEA92] O'Leary, K., Wood, M., Advanced System Ad-ministration, UNIX Press, Englewood Cli�s, NJ,1992, Chapter 8.[OUST90] Ousterhout, J., \Why Aren't Operating Sys-tems Getting Faster as Fast as Hardware?" Pro-ceedings of the 1990 Summer Usenix Technical Con-ference, Anaheim, CA, June 1990, 247-256.[PRES90] Presotto, D., Pike, R., Trickey, H., andThompson, K., \Plan 9, A Distributed System",Proceedings of the Spring 1991 EurOpen Conference(May 1991).[RABIN81] Rabin, M., \Fingerprinting by Random Poly-nomials", Harvard University Center for Research inComputing Technology TR-15-81 (1981).[ROZI88] Rozier, M., Abbrossimov, V., Armand, F.,Boule, I., Giend, M., Guillemont, M., Herrmann,F., Leonard, P., Langlois, S., Neuhauser, W., \TheChorus Distributed Operating System," ComputingSystems v. 1, n. 4 (1988).[SELT92] Seltzer, M., Olson, M., \LIBTP: Portable,Modular Transactions for UNIX", Proceedings 1992Winter Usenix Conference, San Francisco, CA, pp.9-26 (January 1992).[STON81] Stonebraker, M., \Operating System Supportfor Database Management," Communications of theACM, 7, July 1981, 412-418.[VXFS] Unix System Laboratories, \The vxfs File SystemType," from Advanced System Administration forUNIX SVR4.2, 1992.[WAHBE93] Wahbe, R., Lucco, S., Anderson, T., andGraham, S., \E�cient Software-Based Fault Isola-tion", Proceedings of the 14th SOSP, Asheville, NC(December 1993).
6

The Case for Geographical Push-CachingJames Gwertzman, Margo SeltzerHarvard Universityfgwertzma, margog@das.harvard.eduAbstractMost existing wide-area caching schemes are client initi-ated. Decisions on when and where to cache informationare made without the bene�t of the server's global knowl-edge of the situation. We believe that the server shouldplay a role in making these caching decisions, and we pro-pose geographical push-caching as a way of bringing theserver back into the loop. The World Wide Web is anexcellent example of a wide-area system that will ben-e�t from geographical push-caching, and we present anarchitecture that allows a Web server to autonomouslyreplicate HTML pages.1 IntroductionThe World-Wide Web [1] operates for the most part asa cache-less distributed system. When two neighboringclients retrieve a document from the same server, the doc-ument is sent twice. This is ine�cient, especially consid-ering the ease with which Web browsers allow users totransfer large multimedia documents.To combat this problem, some Web browsers have be-gun to add local client caches. These prevent the sameclient from transferring the same document twice. Somenetworks are also beginning to add Web proxies [6, 7] thatprevent two clients on the same campus network fromtransferring the same document twice.The problem with both these schemes is that they aremyopic. A client cache does not help a neighboring com-puter, and a campus proxy does not help a neighboringcampus. Furthermore, these caches are usually limited insize. Disk might be cheap, but as the size of multimedia�les increases it will be impossible to cache everything. Asa result these caches will only be able to store the mostpopular items even though there is still some demand forother, less popular items.The solution is for clients to share each other's cachespace. The degree to which a �le is replicated should beproportional to that �le's global popularity, and clientsshould retrieve �les from the the nearest cache to mini-mize network tra�c. The server can satisfy both goalsby deciding when and where to cache �les. Furthermore,

when the server decides where to cache a �le, it can makethis decision using its knowledge of network topology andthe �le's access history for even greater network band-width savings.2 MotivationPreliminary analysis of Web access logs show that a few�les on each server are responsible for most tra�c fromthat server. Servers can therefore save a great deal ofbandwidth by only worrying about those few �les. Thisfact makes server caching feasible since replicating anddistributing �les puts a slight load on the server. Analy-sis also shows that the access pattern for each �le is notgeographically uniform. File requests are often clusteredgeographically which implies that judicious selection ofcache sites can provide excellent bandwidth savings.3 ArchitectureThere are two components to our proposed Web system:a modi�ed HTTP server and a replication service. Themodi�ed server is responsible for tracking geographicalaccess information for its �les and for accepting and of-fering cached replicas of other �les. This can be done bymodifying a proxy server, such as the CERN proxy server[6], to accept �les for replication using a modi�ed POSTrequest.The replication service keeps track of modi�ed HTTPservers that are willing to serve replicated �les, theamount of available free space on each server, and eachserver's average load. The replication service works withthe modi�ed server to decide where a given �le should becached.We must minimize the amount of state that each Webserver stores for its �les, or else we will face scalabilityproblems. We therefore track geographical access infor-mation in a coarse manner. We are currently using statesand countries since these can easily be obtained from net-work addresses.When the demand for a �le exceeds a replication thresh-old, the server replicates it. We are using trace-driven1

Figure 1: Before �le replication takes place: several clients accessing a World Wide Web �le on the east coast.simulation to determine reasonable values for the replica-tion threshold, and we expect it to be dynamic.The replication service decides where to replicate the�le given its access history. The goal is to pick a server tocache the �le that will minimize the amount of bandwidthused in the future. We predict this by using the �le'shistory.Figure 1 and �gure 2 illustrate the replication processin action. Several clients from across the United Statesare accessing a �le on an east coast server. The east coastserver replicates the �le such that network bandwidth isminimized, and the �le ends up on a west coast server.The replication service maintains a list of all HTTPservers willing to replicate �les; it must choose one of themto cache the �le. We are considering several algorithms todetermine the optimal cache location. If the service knowsthe Internet's topology it can solve the problem by �ndinga good solution to the corresponding graph partitioningproblem or max-cut min-ow problem.If only coarse grained information is available about theInternet, such as average latency between servers (avail-able from traceroute) a better solution is to iterate overa representative sample of the available servers, calculat-ing bandwidth savings for each. The service would thenreplicate the �le on the server that would have reducednetwork bandwidth the most.Once the primary server gives a �le to another serverfor caching, the primary server forgets about the other

server. The primary server's load will drop as clients beginto access the �le from the new server. Should the primaryserver's load climb high enough that it must replicate the�le again, the primary server will choose a di�erent serverto cache it on since the access patterns will have changed.Likewise, if the new server's load climbs high enough suchthat it must replicate the �le, it will be cached in yetanother place, because the access patterns for the newserver will be very di�erent than those for the old server.There are two issues that must still be addressed forthis scheme: �le consistency and resource discovery. Aserver may determine that its copy of a �le is out of dateby using the get-if-modi�ed-since HTTP request. This isan e�cient way to both check consistency and to requestthe new �le in the event it has been modi�ed, but it istoo expensive to use every time a �le is requested.Since weak-consistency should be acceptable for theWeb, we are using a scheme developed for the Alex [4]�le system. With the exception of dynamic pages (thesewill be addressed separately) we expect the Web to obeythe same principle as FTP: the older a �le is, the lesslikely it is to be modi�ed. Therefore, the older the �lethat an HTTP server is caching, the less frequently theHTTP server must poll to check if its copy is still up-to-date. This is very e�cient compared to checking for everyrequest, and the client will be able to force a poll if it isessential to use the latest �le.As for resource location, there are several groups work-2

Figure 2: After �le replication has taken place: the �le has been replicated onto a west coast server so as to minimizenetwork bandwidth.ing on this problem. Until this problem is solved we areusing a technique proposed by Blaze [2], which we callthe \1-800 technique". Clients \call" the primary serverto ask for the \server nearest you." This is not elegant,but it works because latency is currently more criticalthan bandwidth. The expense of querying a distant serveronce is amortized over the many local requests that arethereby made possible. Eventually there will need to bea cleaner solution so that all dependence on the originalserver can be removed. Otherwise we will face scalabilityand reliability problems.4 Other ApplicationsThroughout this paper we have referred to HTTP serversand �les. This was for the purposes of clarity, as wellas to provide a focus for our research. We expect our re-sults to be applicable to any wide-area distributed system,however; not just the World Wide Web. One applicationfor geographical push-caching that we have in mind is toreplicate not only data �les but also services themselves.A good example would be Archie [5], whose load prob-lems are notorious. If Archie were to be written in amachine-independent network-service scripting language(e.g. Tcl [8]), its code could be replicated and cached justlike a Web �le. This might also be the answer to how to

cache dynamic pages, such as those generated by cgi-binscripts that are used to create Web pages on the y.5 Related WorkThere is little work on caching in large-scale distributedsystems outside of distributed �le systems, since only inthe past few years has the attention of the distributedsystems community turned toward globally distributedsystems such as the World-Wide Web and FTP. Severalgroups are working on similar problems, but none that weknow of are working on server-initiated caching. The Har-vest system [3] in particular incorporates an object cachingsubsystem that provides a hierarchically organized meansfor e�ciently retrieving Internet objects such as FTP andHTML �les.Blaze [2] has addressed caching in a large-scale system.His research focused on distributed �le systems, but canbe applied to FTP or the Web. Finally, the Alex system[4] was designed to provide a means of caching FTP �les.Of these three systems, Blaze's design comes closest to ourown since it supports replication when demand becomestoo high, and because it lets clients use any nearby cache.It does not, however, provide the server with control overwhere replicas are placed.3

6 ConclusionWe do not believe that geographical push-caching shouldreplace client-initiated caching. These two techniques ad-dress the same problem on two di�erent time-scales, andtherefore are complimentary. Client-initiated caching re-sponds quickly to local changes in a �le's popularity, butcan not alleviate a global rise in demand. Likewise, server-initiated caching can not cope very well with sudden, lo-calized jumps in popularity, but is best suited to handlinglong-term �le request trends.We close with this reminder of why server-initiatedcaching is necessary, taken from the Web home page ofthe WebLouvre [9].Note: Starting end of October 1994, we are cur-rently experiencing severe network problems onour 256 Kb school Internet connection. Pleasebe understanding! I am still looking for a sitewilling to mirror the WebLouvre exhibit (30 Mbin all), preferably in the USA.References[1] T. Berners-Lee, R. Cailliau, J-F. Gro�, and B. Poller-mann. World-wide web: The information uni-verse. Electronic Networking Research, Applicationsand Policy, 2(1):52{58, 1992.[2] Matthew A. Blaze. Caching in large-scale distributed�le systems. Technical Report TR-397-92, PrincetonUniversity, January 1993.[3] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy,Udi Manber, and Mich ael F. Schwartz. Harvest: Ascalable, customizable discovery and access system.Technical Report CU-CS-732-94, University of Col-orado, Boulder, 1994.[4] Vincent Cate. Alex - A global �lesystem. In USENIXFile Systems Workshop Proceedings, pages 1{12, AnnArbor, MI, May 21 - 22 1992. USENIX.[5] Alan Emtage and Peter Deutsch. Archie - an electronicdirectory service for the internet. In Proceedings of theUSENIX Winter Conference. USENIX, January 1992.[6] Ari Luotonen and Kevin Altis. World-wide webproxies. In Computer Networks and ISDN systems.First International Conference on the World-WideWeb, Elsevier Science BV, 1994. available from'http://www.cern.ch/ PapersWWW94/ luotonen.ps'.[7] Mosaic-x@ncsa.uiuc.edu. Usingproxy gateways. World-Wide Web. available from'http://www.ncsa.uiuc.edu/ SDG/Software/ Mosaic/Docs/ proxy-gateways.html'.

[8] John K. Ousterhout. Tcl: An embeddable com-mand language. In USENIX Conference Proceed-ings, pages 133{146, Washington, D.C., January 22-261990. USENIX.[9] Nicolas Pioch. Le weblouvre. World-Wide Web. http://mistral.enst.fr/ pioch/louvre/louvre.shtml.

4

Structuring the Kernel as a Collection of Reusable ComponentsChristopher SmallHarvard Universitychris@das.harvard.eduAbstractConventional operating systems provide high-level, black-box services to application programs. If the services donot �t the needs of an application, the application is out ofluck. Applications whose needs might be met by the oper-ating system need to reimplement facilities from scratch.Instead of providing black-box services, an operatingsystem should be decomposed into a set of reusable, incre-mentally extensible components. These components areused by the kernel to implement its services and can bereused by applications. If only part of a service is neededby an application (e.g. the bu�er cache from the �lesys-tem), it is available as a separate module. This approachis taken by the VINO kernel, under development at Har-vard University.1 IntroductionConventional operating systems provide services such as�le storage, name management, and caching. As a side-e�ect of implementing these services the kernel typicallyimplements, but does not export, fast synchronization,simple transaction management, and logging. The in-terface provided by the kernel allows applications to usethe exported services as-is; if the service is not appropri-ate, the application must implement a replacement fromscratch.At the application level, object-oriented developmentmethodologies are all the rage. Toolkits for developingapplications are available for user interface development,database access, document management, and general datastructure manipulation [NEXT93]. These toolkits arecomposed of reusable, extensible, and cooperative mod-ules.The operating system should construct its services assuch a toolkit. In order for a system structured this wayto be useful, it needs to be appropriately decomposed andeasily extended. This paper describes the service decom-position and extension mechanism found in the VINO ker-nel, under development at Harvard University.

2 Related WorkOthers have examined the need for customizing operatingsystems. Kiczales et al. argue that the black-box modelfor operating systems hides not only crucial implemen-tation details but crucial policy issues as well [KICZ93];these policy decisions are not appropriate for all applica-tions.Anderson argues that the code in the operating systemsshould be stripped to a minimum [ANDE92]. The func-tionality of the operating system would be moved intothe application; the kernel would only be responsible forarbitrating resource requests. Applications would havecontrol over policy decisions because the decisions wouldbe made in application code; services such as �le systemswould be developed as application libraries, and couldbe reused or circumvented by applications. The Aegisexo-kernel [ENGL94] follows this approach. In contrast,VINO leaves services in the kernel, but allows applicationsto reuse them in-place.The SPIN system [BERS94] is an extensible microker-nel that allows applications to add code to the kernel on-the-y as spindles. The spindle mechanism allows servicesto be constructed that are tailored for a particular appli-cation. SPIN focuses on adaptability rather than reuse;although application code can be placed in the kernel (fora performance gain), the SPIN architecture is essentiallythat of a conventional microkernel.3 DecompositionAn operating system is composed of a set of services.Some are normally exported, others hidden. For example,the Fast Filesystem [MCKU84] is composed of physicalstorage, a bu�er cache, a name service, metadata synchro-nization and management, and a recovery tool. In VINO,where a larger service can be decomposed into potentiallyuseful subservices, it is; for example, VINO o�ers each ofthe components of its �lesystem as a separate service toapplication programs.1

3.1 File ManagerThe �le manager provides the standard Posix-style �leoperations to its clients: read, write, seek, append, andtruncate. A �le system normally builds this abstractionon top of a physical disk using the disk; VINO interposesa volume manager between the �le manager and the rawdevice. The volume manager arbitrates requests for diskspace to subsystems that require persistent storage. Theuse of the volume manager allows the disk to be dynami-cally partitioned between its clients.Alternatively, a �lesystem can be created and directedto use a di�erent manager for its storage, e.g. a vir-tual memory based volume (for building a memory-based�lesystem), or a di�erent �le manager (delegating persis-tent storage to another �lesystem). The latter techniquecan be used to build a layered �lesystem; a compressed�lesystem would override the default read and write op-erations and store the compressed data on a �le systemthat writes its data to a disk.3.2 Cache ManagerThere are several caches in the typical system. The bu�ercache is a cache of recently-used disk blocks; physicalmemory holds recently used virtual memory pages. Acache consists of a function that maps references to cacheentries, a backing store interface, and a replacement pol-icy. By allowing clients to de�ne the implementation ofeach of these interfaces, the standard cache manager canbe used by VINO for both for the bu�er cache and theVM cache, or by applications managing their own datacaches. For example, a database management system canmanage its client cache by replacing the backing store in-terface with remote requests to the database server.3.3 Name ManagerA �lesystem normally includes a subsystem that maps aname to �le reference (e.g. an i-node number, NFS �lehandle, or vnode pointer). The same code can be usedfor other applications that use a hierarchical namespace,such as a database naming subsystem, the Domain NameService, or X11's resource database.3.4 LockingThe operating system's synchronization primitives aretypically much simpler and more e�cient than those pro-vided to user-level applications. For example, obtaininga semaphore in System V [AT&T] incurs the cost of asystem call. This overhead is not usually necessary; if alock is not contested, a user-level test-and-set instructioncan be used to obtain the lock cheaply. If it is alreadyheld, a system call would then be made to enqueue thelock request [SELT92].

Single level locks are not always su�cient; a lock man-ager needs to provide general-purpose hierarchical locking[GRAY76]. For example, the �le system typically allowslocking at the block, �le, directory and �le system levels;a relational database management system lock hierarchyconsists of �eld, tuple, relation, and database. When alock is requested, the lock manager must verify that noconicting lock is held on any other element in the hier-archy.In most kernels, the �le system locking hierarchy is im-plicit, buried in the code; a general lock manager must beable to work with any user-speci�ed hierarchy. VINO ac-complishes this by allowing an application to de�ne a con-tainment hierarchy for the resources being locked. Whena lock request is made, the lock manager examines thecurrently allocated locks and the client-speci�ed contain-ment hierarchy to determine if the new request can begranted.Clients need to be able to specify how the lock managerbehaves in the face of lock contention, e.g. deadlock de-tection and resolution, blocking or non-blocking requests,and lock types (read vs. write locks) and lock compati-bility (multiple concurrent readers vs. single writer).Note that by integrating the kernel and user level lock-ing systems, concurrency can be increased. For example, aDBMS running on a conventional UNIX1 �le system mayimplement its own lock manager to synchronize databaseaccess, and issue multiple I/O requests to the same �le.Unfortunately, the UNIX �le system exclusively locks theentire �le during each I/O operation { no concurrency isachieved even though the DBMS is already ensuring theintegrity of the operation. With shared lock management,because the same lock manager handles both DBMS re-quests and I/O requests, locks held by the DBMS are suf-�cient to perform I/O; no additional locking is requiredby the �le system.3.5 Log Manager and Recovery ManagerSeveral new �le systems use database-style logging forimproved performance and fast recovery [CHANG90,CHUT92, KAZAR90, VXFS], but this facility is not ex-ported to applications. Obviously, database managementsystems use logging, but many other applications need re-covery systems as well. For example, FrameMaker2, vi,news readers such as rn, and email front-end tools all at-tempt to retain and recover their state in the face of run-time failure. Recovery code is notoriously complex, and isoften the subsystem responsible for the largest number ofsystem failures [SULL91]. Supporting multiple recoverysystems can only reduce total system robustness.In VINO, a log resides on one or more physical devices.1UNIX is a trademark of X/Open.2FrameMaker is a registered trademark of Frame TechnologyCorporation.2

It can be created on a single device, or extended onto asecond device (not necessarily of the same type as the�rst). A DBMS would request a log that spans bothmagnetic disk and archive media (e.g. tape or opticaldisk). The kernel would request a volatile, in-memorylog to support transactions on ephemeral data, such asprocess structures and bu�er cache metadata. The �lesystem would request a log that spans non-volatile RAMand disk; �le system log records would be written �rstto non-volatile RAM and later written to disk in large,e�cient transfers.The key interface to the log facility is the read/writeinterface that supports write-ahead logging: a write-logfunction that returns a unique identi�er (a log sequencenumber), and a read-log function that returns records inlog sequence order. It also supports a synch-WAL opera-tion to synchronize the log with the data being logged, anda checkpoint operation for log reclamation and archiving.3.6 Transaction ManagerThe kernel uses transactions to maintain consistency dur-ing updates to multiple related resources (e.g. a directoryand its contents). For example, when the Fast Filesystemupdates metadata, it carefully orders disk writes to en-sure the recoverability of the �lesystem. In the context ofa transaction, the order of these writes would be unimpor-tant; the transaction would commit or abort atomically.The VINO transaction manager supports the standardtransaction-begin, transaction-commit, and transaction-abort operations. It accepts references to appropriate logand lock manager instances to use for each transaction.At transaction begin, a new transaction resource is cre-ated. This resource references the appropriate log andlock managers and is referenced by each protected up-date. Most kernel transactions are protected using a sim-ple shadow-resource scheme with a log residing in main-memory (either volatile or non-volatile, depending on theresources being protected). The mixing and matching oflogging and locking components enables VINO to supportarbitrarily complex transaction protocols.The transaction manager includes facilities for con-structing extended transactions [BILI94], allowing appli-cations to take advantage of alternative models such asnested and split-join transactions.4 Extensibility and ReuseExporting a service to applications is only half the battle;we also need a mechanism for allowing the service to bespecialized or extended.VINO implements each of the managers describedabove as a resource type. A resource type consists of agroup of operations and properties. The operations can

be overridden by an application by grafting a new im-plementation into the kernel. The grafting process usessandboxing [WAHBE93] or a similar software fault isola-tion technique to ensure that user code does not com-promise the safety of the kernel. Code is written in aconventional programming language; unlike other exten-sible systems (e.g. SPIN [BERS94], Aegis [ENGL94] andThor [LISK93]), we have not undertaken the task of de�n-ing a new typesafe language. It is outside the scope of ourproject to specify, implement,and support a new language,and widespread acceptance of new languages in the com-munity, irrespective of their elegance and power, is verylow.Even with these assurances, user-installed code may notterminate in a timely fashion. The VINO kernel is multi-threaded, and grafted code that runs too long times out.The grafted code may be ill-behaved and never return tothe application, but only the application itself su�ers; noother process is prevented from making progress.We must also guard against grafted code obtaining acritical system lock and not releasing it in a reasonableamount of time. To handle this, we attach a time-outto critical locks, and kill a process that does not releasethe lock before the time-out. Each piece of grafted coderuns in the context of a lightweight transaction that keepstrack of its allocated resources. If the process terminates,the corresponding transaction is aborted, and the systemis returned to a consistent state.Unlike the external servers of Mach [ACET86], graftingallows small, incremental changes in kernel functionality.If the page eviction strategy of the system is inappropri-ate, it can be replaced without writing a new externalpager [MCNAM90].5 ConclusionsConventional operating systems provide services as blackboxes; where the services do not �t the needs of an ap-plication, the application is out of luck. Instead of o�er-ing monolithic services, the kernel should be structuredto provide a collection of smaller, reusable, incrementallyextensible tools for application reuse.References[ACET86] Acetta, M., Baron, R., Bolosky, W., Golub,D., Rashid, R., Tevanian, A., and Young, M.,\Mach: A New Kernel Foundation for UNIX Devel-opment", Proceedings of the Summer Usenix Con-ference (July 1986).[ANDE92] Anderson, T., \The Case for Application-Speci�c Operating Systems", Proceedings of the3

Third Workshop on Workstation Operating Sys-tems, 1992.[AT&T] AT&T, \System V Interface De�nition, ThirdEdition," Volumes 1{3, 1989.[BERS94] Bershad, D., Chambers, C., Eggers, S., Maeda,C., McNamee, D., Pardyak, P., Savage, S., GunSirer, E., \SPIN { An Extensible Microkernel forApplication-speci�c Operating System Services,"Technical Report 94-03-03, Department of Com-puter Science and Engineering, University of Wash-ington, Seattle (1994).[BILI94] Biliris, S., Dar, S., Gehani, N., Jagadish, H.V., and Ramamritham, K., \ASSET: A System forSupporting Extended Transactions", Proceedings ofSIGMOD 94, Minneapolis, MN (May 1994).[CHANG90] Chang, A., Mergen, M., Rader, R., Roberts,J., Porter, S., \Evolution of storage facilities in AIXVersion 3 for RISC System/6000 processors," IBMJournal of Research and Development 34, 1, January1990.[CHUT92] Chutani, S., Anderson, O., Kazar, M., Lev-erett, B., Mason, W., Sidebotham, R., \The EpisodeFile System," Proceedings of the 1992 WinterUsenix Conference, San Francisco, CA, January1992.[ENGL94] Engler, D., M. F. Kaashoek, and J. O'Toole,\The Operating System Kernel as a Secure Pro-grammable Machine", Proceedings of the SixthSIGOPS European Workshop (September 1994).[GRAY76] Gray, J., Lorie, R., Putzolu, F., and Traiger,I., \Granularity of Locks and Degrees of Consistencyin a Large Shared Database," in Modeling in DataBase Management Systems, Elsevier North Holland,New York, pp. 365-394 (1976).[KAZAR90] Kazar, M., Leverett, B., Anderson, O.,Vasilis, A., Bottos, B., Chutani, S., Everhart, C.,Mason, A., Tu, S., Zayas, E., \DECorum File Sys-tem Architectural Overview," Proceedings of the1990 Sum- mer Usenix, Anaheim, CA, June 1990,151-164.[KICZ93] Kiczales, G., Lamping, J., Maeda, C., Keppel,D., McNamee, D., \The Need for Customizable Op-erating Systems", Proceedings of the Fourth Work-shop on Workstation Operating Systems, Napa CA,August 1993.[LISK93] Liskov, B., Day, M., and Shrira, M., \Dis-tributed Object Management in Thor", in Dis-tributed Object Management, Morgan Kaufmann,San Mateo, California (1993).

[MCKU84] McKusick, M., Joy, W., Le�er, S., Fabry, R.,\A Fast File System for UNIX," Transactions onComputer Systems, v. 2 n. 3, pp. 181-197 (August1984).[MCNAM90] McNamee, D., and Armstrong, K., \Ex-tending the Mach External Pager Interface to Ac-commodate User-Level Page Replacement Policies,"Proceedings of the 1990 Usenix Mach Workshop,Burlington, VT (1990).[NEXT93] \NextStep 3.0 Users Manual", Next Computer(1993).[SELT92] Seltzer, M., Olson, M., \LIBTP: Portable,Modular Transactions for UNIX", Proceedings 1992Winter Usenix Conference, San Francisco, CA, pp.9-26 (January 1992).[SULL91] Sullivan, M., and R. Chillarege, \Software De-fects and Their Impact on System Availability { AStudy of Field Failures in Operating Systems", Di-gest 21st International Symposium on Fault TolerantComputing (June 1991).[VXFS] Unix System Laboratories, \The vxfs File SystemType," from Advanced System Administration forUNIX SVR4.2, 1992.[WAHBE93] Wahbe, R., Lucco, S., Anderson, T., andGraham, S., \E�cient Software-Based Fault Isola-tion", Proceedings of the 14th SOSP, Asheville, NC(December 1993).

4

Lies, Damned Lies, and File System BenchmarksDiane Tang, Margo SeltzerHarvard University, Division of Applied Sciencesfdtang, margog@das.harvard.eduAbstractFile system design, implementation, and performance is ahot topic in operating systems research, but nearly all theresearch in the area revolves around performance numbersderived from inadequate benchmarks. File system bench-marks su�er from lack of scalability, sensitivity to operat-ing system behavior other than the �le system, and fun-damental misconceptions about what is being measured.If �le system research is to move forward, the commu-nity needs robust, scalable, and informative �le systembenchmarks. This paper presents some of the aws intoday's �le system benchmarks, proposes a set of guide-lines for the development of good �le system benchmarks,and discusses approaches to the creation of a compliantbenchmark.1 IntroductionAssuming that the number of publications in an area isan indication of research interest, �le systems and dis-tributed shared memory are among the hottest topicsin operating systems research. The 1991 SOSP confer-ence boasted seven �le systems papers out of eighteen,1993 SOSP boasted three of twenty-one, the 1994 SummerUsenix twelve out of twenty-seven, and the 1995 Usenixten out of twenty-seven.These papers focus primarily on three issues: distribu-tion, improved performance, and scalability. In order toargue any of these points, researchers must demonstratethat the �le system under investigation functions cor-rectly, provides adequate (or exceptional) performance,and satis�es the novel claims made. Performance, in par-ticular, is a key challenge for �le systems as processorspeeds climb exponentially while I/O speed grows at alinear rate [9]. Unfortunately, the technology for describ-ing �le system performance is woefully inadequate.This paper critiques the most oft-cited �le systembenchmarks and proposes a set of criteria for the estab-lishment of successful �le system benchmarks.

2 Current Benchmarks are a Dis-graceBenchmarks commonly used to measure �le system per-formance today su�er from several problems: lack of scal-ability, use of a single number as a �nal result, measure-ment of I/O performance rather than �le system perfor-mance, and myopia (an emphasis on incidental implemen-tation e�ects that rarely determine typical user perfor-mance).We have examined most of the benchmarks used in re-cent research papers and will discuss Bonnie, the AndrewBenchmark, IOStone, and LADDIS (formerly known asNFSSTONE and NHFSSTONE). We use the weaknessesof these benchmarks to determine criteria for �le systembenchmarks.Bonnie consists of six micro-benchmarks designed tomeasure bottlenecks in the �le system [1]. Bonnie mea-sures the disk read/write throughput and random seektime. The main shortcoming of Bonnie is that it is notreally a �le system benchmark, but rather a disk bench-mark, and I/O performance cannot be equated with �lesystem performance. For example, Bonnie gives no indi-cation as to how fast a �le system can perform a path-name lookup; it only tells the user how fast the systemcan transfer data. Because of these limitations, Bonniedoes not indicate how well a real application will performon the system. Bonnie yields the directive: \Thou shaltmeasure the �le system if thou art reporting �le systemperformance."The Andrew Benchmark, originally developed at CMUto compare AFS to other �le systems, uses existing Unix1utilities to create a directory hierarchy, copy �les to thathierarchy, examine the �les, and then compile them [3].At the time Andrew was developed, it might have stressedmany �le systems. However, Andrew has not scaled withtime: Andrew uses a �xed-size data set, which is toosmall. On most systems today, the entire data set will�t in the bu�er cache, which means that after the initialcreate and copy, all data requests can be satis�ed from thecache. Furthermore, Andrew's running time is dominatedby the compile phase, which means that Andrew is almost1Unix is a trademark of X/Open.1

entirely user CPU bound, rather than either I/O boundor system CPU bound. As a result, it is unclear what An-drew measures today. Andrew yields the directive: \Thoushalt make �le system benchmarks scalable."IOStone, developed in 1990 at UC-Davis, is designed tomeasure �le system performance on a workload based onUnix �le system traces [7, 4] and IBM mainframe traces[11, 12]. IOStone has three phases: create a �le systemhierarchy, read and write the hierarchy, and delete thehierarchy [8]. Only the read/write phase is measured toproduce one �nal result in IOStones per second. IOStonehas many shortcomings. Its �le system hierarchy modelis awed: IOstone claims to emulate the workload on atypical UNIX workstation by creating a model at �lesystem hierarchy, but real �le system hierarchies are rarelyat. Furthermore, in an attempt to remove cache e�ects,it reads large spacer �les before the read/write phase ofthe benchmark. Unfortunately, the spacer �les are �xed-size (4 MB), independent of the cache size and thereforeinadequate to ush large caches. The data set is also smallenough to �t in almost any bu�er cache, which meansthat, like Andrew, IOStone is not particularly I/O bound.The �nal shortcoming of IOStone is that it only producesa single result in IOStones per second. This result canprovide comparative performance information, but it doesnot help the user determine what aspects of the systemneed to be improved or how to improve them. IOstoneyields the directive: \Thou shalt make benchmark resultsdescriptive."The last benchmark we examine here is LADDIS, whichis still under development. LADDIS is based on NHFS-STONE, which is based on NFSSTONE, and is designedto measure the performance of NFS servers [10, 5, 6].LADDIS has the potential to be a wonderful benchmark -for NFS servers. It is scalable in the number of clients andin the load per client, its results must be presented graph-ically (showing how the performance of a server varieswith load), and it measures the performance of the server.However, it is limited to NFS, and it does not give a clearindication of how to improve system performance sincethe only parameter it varies is load on the client. LAD-DIS yields the directive: \Thou shalt make benchmarksprescriptive."What we can see is that many of the existing bench-marks have severe limitations: they do not scale, and theydo not measure the �le system. As a result, they are notparticularly useful and they do not assist researchers inunderstanding �le system performance.

3 The Call for a New File SystemBenchmark MetricIn order to design a good �le system benchmark, we needto de�ne a measure of goodness. Chen stated severalgoodness criteria for I/O benchmarks [2]. Namely, an I/Obenchmark should be:� Prescriptive: it should point system designers to pos-sible areas of improvement.� I/O bound.� Scalable with advancing technology.� Comparable between di�erent systems.� General: applicable to a wide variety of workloads.� Tightly speci�ed: no loopholes and clarity in whatneeds to be reported.These measures are exactly those we derive for �le sys-tem benchmarks. In fact, with the exception of I/O-boundedness, these criteria should probably be appliedto most benchmarking methodologies.In the case of �le system benchmarking, we want tounderstand the behavior of each component, e.g., disks,caches, �le system code. If we can isolate the performanceof each component of the �le system, then we can identifyareas for improvement. Furthermore, if we can character-ize an application in terms of these components, we candetermine how well a particular �le system will satisfy aparticular application's needs. For example, suppose thetask at hand is to optimize performance of a databasesystem that stores every record in a separate �le. Thisdatabase will undoubtedly perform poorly on �le systemswith poor lookup performance.It is our hope that the methodology that enables us tocharacterize a �le system by its component performancecan be extended to characterize an operating system byits component performance as well. Such a benchmarkingsystem would allow us to accurately compare subsystemsresiding in di�erent operating systems since we can accu-rately attribute di�erences to the correct components.4 A Better BenchmarkThe self-scaling I/O benchmark developed by Chen [2] ful-�lls the goals stated in the previous section. This bench-mark has �ve parameters: the size of the overall data set,the number of processes running concurrently, the averagesize of an I/O request (to the nearest block), percentageof operations that are reads, and percentage of operationsthat are sequential (as opposed to random). The bench-mark has two phases. It �rst �nds the focal vector, which2

is the set of �ve values (one for each parameter) that areas far as possible from any drastic performance changes inthroughput as a function of that parameter. Intuitively,the focal points are representative of \typical values," ap-plicable over a wide range of workloads. Once the focalvector has been identi�ed, the benchmark generates �vegraphs: plotting throughput as a function of each param-eter with the remaining parameters at their focal pointvalue. Using these graphs, Chen introduces the idea ofpredictive performance. He claims that since the focalvector is generally applicable, the shape of a graph shouldbe applicable even when the parameters are not at theirfocal values. If a workload can be characterized in termsof these �ve parameters, then the workload performanceis predicted by scaling between the �ve graphs.This benchmark is scalable, tightly speci�ed, repro-ducible, descriptive, and prescriptive - for the I/O sys-tem, which does overlap with the �le system. Its onlyshortcoming for our purposes is that it is I/O system spe-ci�c, rather than �le system speci�c. It does not providefeedback on any �le system component other than diskperformance and bu�er cache size, or what parts of the�le system need to be improved.We are searching for a �le system benchmark that ful-�lls the metrics stated above. We are considering twopossible approaches. One approach is to extend Chen'sideas to �le systems, i.e., to �nd parameters that are in-dicative of �le system performance, rather than I/O sys-tem performance. The main di�culty with this approachis in �nding a set of parameters that are as plausibly in-dependent from one another as those Chen uses to modelthe I/O subsystem. Without parameter independence, welose the ability to predict the performance for a speci�cworkload, and therefore the ability to make cross-platformcomparisons as well.A second approach is to augment Chen's idea witha trace-based benchmark. If we can gather �le systemtraces for speci�c applications and successfully parame-terize them in terms of �le system operations, we canconstruct a �le system benchmark that meets the crite-ria proposed above. For example, assume that we cangather �le system traces of a target application set (e.g.,a compiler, word processor, and database system). Weprocess the traces and derive a parameterized workload,expressed in terms of the mix of �le system operations,their dependence upon one another, and their interarrivaltimes. This parameterized workload is then used to drivethe benchmark. The traces are more informative thansimply running the applications because they provide theability to obtain timing information for speci�c calls. Thisbenchmark can be scaled by increasing the number of pro-cesses, but can also be scaled to di�erent processors anddisks by altering the average interarrival time appropri-ately.

Using the combination of these two di�erent parts of thebenchmark, we ful�ll all the metrics stated in the previoussection. The adaptation of Chen's ideas gives us a pre-scriptive benchmark that measures speci�c aspects of the�le system, while the trace-based benchmark yields cross-platform comparisons and applicability to a wide varietyof workloads. The trace-based approach is insu�cient byitself due to the di�culty in separating out the e�ects ofthe separate components in the �le system, and thus isnot prescriptive. Both methods can be made scalable andtightly speci�ed.5 ConclusionExisting �le system benchmarks are inherently awed inthat they are not very good at measuring the performanceof a �le system. We need a new benchmark that not onlygives accurate performance numbers for a �le system, butis also helpful, scalable, and able to be widely used.References[1] T. Bray, Bonnie source code, NetNews posting,1990.[2] P. M. Chen, D. A. Patterson. \A New Approachto I/O Benchmarks - Adaptive Evaluation, Pre-dicted Performance", UCB/Computer Science Dept.92/679, University of California at Berkeley, March1992.[3] J. H. Howard, M. L. Kazar, S. G. Menees, D. A.Nichols, M. Satyanarayanan, R. N. Sidebotham, M.J. West. \Scale and Performance in a DistributedFile System", ACM Transactions on Computer Sys-tems 6, 1 (February 1988), 51-81.[4] I. Hu. \Measuring File Access Patterns in UNIX",Performance Evaluation Review 14, 2 (1986), 15-20.ACM SIGMETRICS (1986).[5] M. K. Molloy. \Anatomy of the NHFSSTONESBenchmark", Performance Evaluation Review 19, 4(1992).[6] B. Nelson, B. Lyon, M. Wittle, B. Keith, \LADDIS- A Multi-Vendor and Vendor-Neutral NFS Bench-mark", UniForum Conference, (January 1992).[7] J. K. Ousterhout, J. DaCosta, et al. \A Trace-Driven Analysis of the UNIX 4.2 BSD File System",Operating Systems Review 19, 5 (December 1985),15-24. Proceedings of the 10th Symposium on Op-erating Systems Principles.3

[8] A. Park, J. C. Becker. \IOStone: A Synthetic FileSystem Benchmark", Computer Architecture News18, 2 (June 1990), 45-52.[9] D. A. Patterson, G. Gibson, R. H. Katz, \A Case forRedundant Arrays of Inexpensive Disks (RAID)",International Conference on Management of Data(SIGMOD), (June 1988) 109-116.[10] Shein, M. Callahan, P. Woodbuy. \NFSStone - ANetwork File Server Performance Benchmark", Pro-ceedings of the USENIX Summer Technical Confer-ence (1989) 269-275.[11] A. J. Smith. \Sequentiality and Prefetching inDatabase Systems", ACM Transactions on DatabaseSystems 3, 3 (1978), 223-247.[12] A. J. Smith. \Analysis of Long Term File ReferencePatterns for Application to File Migration Algo-rithms", IEEE Transactions on Software Engineer-ing SE-7, No. 4 (1981), 403-417.

4

The Case for In-Kernel TracingYasuhiro EndoChristopher SmallHarvard Universityfyaz,chrisg@das.harvard.eduAbstractOperating systems are often criticized for providing �xed,lowest-common-denominator policies that are inappropri-ate for many classes of applications [6]. VINO, a newoperating system under development at Harvard Univer-sity, is like other extensible operating systems [1][2] in thatit allows application programs to direct in-kernel policiesthrough a mechanism called grafting [5]. However, to takeadvantage of this service and select or implement e�ectivekernel policies, application developers must perform thenon-trivial task of evaluating each new policy. This typi-cally requires accurate simulation and/or tracing. Therehas been little research on how to aid programmers inthis task. Many of the proposed solutions [3] rely on spe-cially instrumented operating system kernels and/or sim-ulation modules constructed to analyze a single decision.In this paper, we propose an in-kernel tracing and simu-lation mechanism designed to simplify the evaluation ofapplication speci�ed policies.1 IntroductionExtensible operating systems o�er an attractive alterna-tive to applications whose functionality or performanceare thwarted by the rigid kernel policies of conventionaloperating systems. However, extensible systems also bur-den the application with the need for increased decisionmaking. It is possible for applications to exhibit worse be-havior if application speci�ed policies are not carefully se-lected or implemented. VINO simpli�es the analysis pro-cess by providing in-kernel tracing and simulation tools.It does so by exploiting the VINO claim that the operat-ing system kernel is a collection of reusable tools.We structure the kernel to allow users to capture or in-troduce request streams between two kernel modules, andreuse existing kernel code to run simulations. Simulationmodules are instances of regular kernel modules exceptthat they do not a�ect any state seen by the rest of thekernel. For example, the bu�er cache simulation moduleshares much of the code with the real bu�er cache moduleincluding the grafted policy code. Application program-

mers can quickly and easily evaluate the suitability of dif-ferent policies using the tracing and simulation tools thatVINO provides.2 TracesThe kernel is a set of modules with input ports and outputports connected together. Modules such as the �le system,bu�er cache, and device drivers have their ports connectedtogether, and requests are transported through these con-nections. This architecture is similar to the use of streamsin UNIX1. In UNIX, streams facilitate the adaption ofnetwork modules, while in VINO, our architecture sup-ports the adaptation of nearly any module in the system[4]. For example, the input ports of the physically ad-dressed bu�er cache module are connected to the outputport of the �le system modules and the output ports areconnected to the disk driver modules. The bu�er cachemodule accepts requests for a block on a particular diskand either satis�es the request internally using the cacheddisk blocks or generates requests to the appropriate diskdriver modules.VINO provides users with simple methods to alter theow of requests between modules. With this facility, userscan easily generate a log of requests made by a particu-lar module by redirecting the ow of requests to both itsoriginal destination and to a �le. These logs can thenbe used to reproduce a stream of requests that can be fedinto real or simulated kernel modules. In the remainder ofthis paper, we refer to the captured input request streamas a trace and the captured output request stream as alog.This tracing facility allows application programmers aquick and simple way to evaluate policies. For exam-ple, we can evaluate di�erent bu�er cache managementpolicies by replaying the same trace through the bu�ercache module augmented with di�erent policy algorithms,and counting the number of requests in the bu�er cachelog (i.e. counting the number of requests in the outputstream). Because the tracing facility allows the replay oftraces, we can recreate identical workloads for di�erent1UNIX is a trademark of X/Open.1

test runs.3 SimulationSome modules inside the VINO kernel can be instantiatedas simulationmodules freeing programmers from the tasksof building separate simulators. Simulation modules areidentical to real modules except that they do not modifythe global state. Therefore, simulations can run withouta�ecting the rest of the system. Since the simulators andreal modules share much of the code, we do not increasecode size substantially.Modules that support simulation consist of two logicalset of states: the �rst is writable by both the real andsimulation instances of the module and is duplicated foreach instance of such modules, and the other is writableonly by the real instance of the module because the statesare shared system-wide. In case of the bu�er cache mod-ule, information such as which bu�er cache page containsa particular block of a physical disk falls into the �rstcategory while the cached data itself falls into the second.The simulation modules run without a�ecting the restof the system nor are they a�ected by other activities inthe system. This allows the simulators to be run undermany di�erent situations. The user can evaluate appli-cation speci�ed policies by playing back a trace into thesimulation module and logging the output to a �le. Un-like using the real modules to evaluate policies, requeststhat simulation modules generate are not transmitted tothe rest of the system. The simulations consume less sys-tem resources. This makes it feasible for application pro-grammers to develop applications that dynamically alterthe policies that they specify. Such programs may collecttraces as they execute and periodically apply the infor-mation gained from tracing to select policies that mayperform better.4 Sample Uses4.1 Bu�er Cache ManagementUsing VINO's tracing and simulation facilities, applica-tion programmers can evaluate di�erent bu�er cache re-placement policies using three di�erent methods.The �rst method is to run the target application in acontrolled environment and collect logs from the outputport of the bu�er cache module. Given that the useris successful in executing the application in a controlledenvironment, the results obtained using this method arethe most accurate of the three, since we are only usingthe tracing facility to record what is happening in thesystem: the requests that bu�er cache management mod-ule receives are generated by a real program and handledby real kernel modules. This method is not subject to

the timing problems associated with the second and thirdmethods.The second method is useful when the target applica-tions' behaviors are di�cult to reproduce. Many inter-active programs fall into this category. For this class ofapplications, traces collected from the input port of thebu�er cache module can be used to drive the experiment.The user must �rst run the application interactively togenerate the trace, then while the programmer logs the re-quests sent from the output port, the trace can be playedback into the input port of the bu�er cache module asmany times as needed to evaluate di�erent policies. Re-sults obtained using this method are not as accurate asthose obtained using the �rst method. In order to prop-erly reproduce the e�ects of events that are not directlytriggered by the arrival of the requests, such as the ush-ing of dirty cache blocks, the trace must be played backwith the exact timing. However, the timing of the requestarrivals are often dependent on the behavior of the bu�ercache. A miss in the bu�er cache will delay the arrivalof the next request. Therefore, if the policy being eval-uated and the policy used when the trace was collectedare drastically di�erent in the e�ciency, the result maybe inaccurate.The third method utilizes the simulationmodule as wellas the tracing facility to provide a convenient way for pro-grammers to perform dynamic evaluation of policies. Anapplication may periodically collect traces from the inputport of the bu�er cache module and use the trace and thesimulator to decide which policy is most appropriate forthe tasks that the application is currently performing. Be-cause a pre-recorded trace is used to drive the simulator,this method is also subject to the problems with accuracyof method two. In addition, imperfections in the simula-tor implementation may introduce additional errors.4.2 Disk Layout Scheme EvaluationDisks operate most e�ciently when accessed sequentially.Therefore, an ideal disk layout scheme should maximizethe sequential access of the disk and minimize the numberand the distance of seeks that is needed to satisfy a givenset of requests. We can use the tracing facility to examinethe e�ectiveness of di�erent disk layout scheme.One of the di�culties in evaluating disk layout schemearises from the fact that the disk layout scheme has long-term e�ect. Unlike the bu�er cache management policy,which can be evaluated by running a short program, it isimpossible to perform a meaningful evaluation of a disklayout scheme without aging the �le system using the lay-out policy being examined. The aging process involvessubjecting the algorithm to thousands of, if not millionsof �le creation, deletion, expansion, and contraction. Onecan create programs that arti�cially age the �le system,but these programs usually fails to capture what really2

happens in the system under normal use.To overcome these problems, the user can log all therelevant requests that the �le system receives over a longperiod of time. The trace is then used to age the �lesystem. The user must make sure that the �le systemis in a known and easily reproducible state (e.g. empty)before the aging process begins.It is possible to analyze the aged �le system statically todetermine how much of the data is laid out sequentially,but the user should collect traces that reect common �lereference patterns to perform the evaluation. The use ofthese traces helps reect the fact that the e�ectivenessof the layout policy depends heavily on which �les arefrequently accessed and how those �les are accessed. Thelog of disk requests is collected from the output port ofthe bu�er cache, and the user can use this log to analyzethe e�ectiveness of the layout policy in maximizing thesequential access and minimizing the seek.5 ConclusionWe have identi�ed that in order for application program-mers to take advantage of the kernel extensibility, theremust be mechanisms to allow programmers to quickly andeasily evaluate di�erent policies. In-kernel tracing andsimulation is a simple and general solution to this prob-lem and can be implemented without a signi�cant increasein the code size by reusing the code that is already in thekernel. We do not claim that this new facility will com-pletely do away with the need for specialized tracing andsimulation tools, nor do we advocate turning the operat-ing system into a simulator, but rather, we present thisas one example of how we can take advantage of existingkernel code to create a useful tool.References[1] Bershad, B. C., Chambers, S. Eggers, C. Maeda, D.McNamee, P. Pardyak, S. Savage, E. Sirer, \SPIN -An Extensible Microkernel for Application-speci�cOperating System Services", University of Wash-ington Technical Report 94-03-03 (February 1994).[2] Engler, D., M. F. Kaashoek, and J. O'Toole,\The Operating System Kernel as a Secure Pro-grammable Machine" Proceedings of the SixthSIGOPS European Workshop (September 1994).[3] Krueger, K., D. Loftesness, A. Vahdat, T. Ander-son, \Tools for the Development of Application-Speci�c Virtual Memory. Management" In Proceed-ings of OOPSLA '93, volume 28, pages 48-64

[4] Richie, D. M., \A Stream Input-Output System",AT&T Bell Laboratories Technical Journal (Oc-tover 1984).[5] Small, C., \Structuring the Kernel as a Collectionof Reusable Components", Submitted to HOTOSV.[6] Stonebraker, M., \Operating System Support forDatabase Management", Communications of theACM, 7, July 1981, 412-418.

3

Your Operating System is a DatabaseKeith A. Smith and Margo SeltzerHarvard Universityfkeith,margog@cs.harvard.eduAbstractThe fundamental responsibilities of an operating systemare the arbitration of access to shared hardware resourcessuch as the processor, main memory, and I/O devicesand the provision of a clean layer of abstraction atoppotentially complicated devices. Database managementsystems provide the same functionality with respect todata|they arbitrate access to shared data and they pro-vide simple abstractions to facilitate the manipulation ofthis data. Both operating systems and database systemsaddress issues of synchronization, concurrency control,bu�er management, distribution, and recovery. Despitethis overlap of form and function, databases and oper-ating systems have historically been implemented and re-searched completely separately, and often compete, ratherthan cooperate, for resources. This approach leads to re-dundancy in implementation and worse performance thanis possible if a more integrated design and research ap-proach is taken.Operating systems consist of many components thatperform essentially the same task as a database, but eachof these pieces has its own idiosyncratic interface and im-plementation. The design and structure of operating sys-tems can be simpli�ed by using database structuring con-cepts to implement a uniform interface for resource man-agement. In this paper, we present the VINO UniversalResource Interface, a general interface for structuring op-erating systems, and provide examples of its use.1 IntroductionIn simplest terms, both operating systems and databasesystems arbitrate access to shared resources. In the caseof an operating system, these resources are typically hard-ware components: disks, network interfaces, serial lines,main memory or processors. In the case of database sys-tems, the resources are typically data: �les, records, orobjects. Both types of systems perform similar tasks inmanaging these resources (e.g., bu�er management, syn-chronization, disk allocation, recovery), yet they rarelyshare code to do so. The database community has beencomplaining about the lack of database support in oper-

ating systems for over a decade [Stone81], yet little seemsto have changed.Although database systems have been using loggingto provide atomic updates and fast recovery for decades[Gray78], it is only in the last �ve years that we haveseen the �le system community accept logging as an ap-proach for high performance and fast recovery [Ouster89,Kazar90, Chutani92]. Similarly, database managementsystems have long addressed the problems of distributedaccess to shared data [Bern81]. Operating systems havefaced the same problem in providing support for dis-tributed �le systems and distributed shared memory. Un-fortunately, much of the operating system research inthese �elds has ignored solutions used by database sys-tems, leading to wasted e�ort rediscovering the same solu-tions (and the same dead ends). While operating systemshave begun adopting some database techniques, they havedone little to address the needs of database systems.We believe that the time for operating systems re-searchers and database researchers to work together haslong since passed. If either �eld is to move forward, bothmust acknowledge the commonality between the two andlearn from the past. We go so far as to argue for a tighterintegration: where database and operating system func-tionality overlap, they should endeavor to use a commoncode base. More fundamentally, as researchers, we mustexamine the conventional architectures of each and dis-tinguish the gems from the aws.The rest of this paper is organized as follows. The nextsection provides a brief overview of database functionality.Section 3 describes a uniform interface for resource man-agement in operating systems. In section 4 we show howa �le system might be implemented using this structur-ing technique. Section 5 provides a brief survey of relatedwork, and we summarize in section 6.2 What Do Databases Do?A database management system (DBMS) is a repositoryof data. A database used by a bank might include infor-mation about all of the accounts at that bank, the namesand addresses of the account holders, and the amountof money in the accounts. Clients of a database make1

requests to the database when they wish to read or mod-ify data (modi�cations include adding new data, deletingdata, or editing existing data). A database may havemany clients simultaneously issuing requests. In somecases, these clients may be distributed across a network.In most cases, modi�cations to the state stored by adata base take place in the context of transactions. Trans-actions provide four important properties, atomicity, con-sistency, isolation, and durability. Atomicity means thatthat the modi�cations in each transaction are applied as asingle unit. Either they all are applied to the database, ornone of them are. The consistency property insures thatdata in the database is always in a consistent state; trans-actions are required to take the database from one con-sistent state to another. Isolation requires that result ofconcurrent transactions be indistinguishable from the re-sult of applying the same transactions in some sequentialorder. The last property, durability, insures that once atransaction has been committed, its results are preservedacross system failures [Gray93].The properties of isolation and consistency require thatsome form of locking or concurrency control be appliedto the data residing in a database. Traditionally, thiscapability has been provided through the use of locks,with read locks supporting multiple simultaneous accessesand write locks prohibiting concurrent access [Gray76].To speed access to data, most databases index thestored data items by one or more keys. Given the key, thedatabase can quickly retrieve the corresponding data ob-ject by performing an associative lookup. The exact datastructures and lookup mechanisms used by a database aretransparent to the user, residing behind the abstractionof records and keys. Frequently, the selection of indexingstructures is tuned to the application and type of databeing accessed. Balanced trees (B-trees) and hash tablesare two of the most common indexing mechanisms.Another optimization performed by nearly all databasemanagement systems is the bu�ering of frequently-useddata in memory to exploit spatial and temporal localityin the stream of data references. This is similar to thebu�ering implemented in a traditional �le system bu�ercache except that databases typically implement more so-phisticated page replacement algorithms than the simpleLRU algorithm used by most �le system caches [Chou85].3 A Universal Resource InterfaceAn operating system controls many resources that aremanaged in the same manner as the data resources man-aged by a DBMS. Some of these resources are visible tothe users of the operating system (e.g., directories, �les),and some are not (e.g., page tables, scheduling queues).Each of these resource types can be viewed as a set ofsimilar objects. New objects can be added to the set, and

existing objects can be deleted from it. The operating sys-tem performs lookup operations to retrieve objects fromthe set, and the operating system may modify existingobjects in the set. This model of resource managementis the same as that used by database systems to managedata objects.A page table, for example, is simply a collection of phys-ical memory pages indexed by their virtual addresses ina process address space. When new pages are broughtinto memory, new entries are added to the page table.Similarly, when pages are evicted from memory, entriesare deleted from the page table. Whenever the processreferences memory, the virtual address of the reference isused to perform an associative lookup in the page table,returning a physical memory page where the desired vir-tual address is located. In most architectures, this lookupis expedited by dedicated hardware, such as TLBs.On a uniprocessor, the database notion of shared ver-sus exclusive access seems to have no analog with respectto page tables. With only one processor, only one pagecan be accessed at a time, and therefore all page accessesare exclusive. In a parallel or distributed architecture,however, multiple processors may be using the same pagetable and attempting to access the same pages concur-rently. In such a system, memory consistency becomes animportant issue, and the processors must be coordinatedwith respect to which ones read or write a given memorypage at what point. This problem is exactly analogousto the problem faced by a DBMS in handling concurrentrequests to read and/or write the same data objects.Although many di�erent operating system facilities re-quire this database model of resource management, eachone is typically implemented independently, resulting inmultiple implementations and interfaces for arbitratingaccess to resources. This lack of a common resource man-agement interface limits the opportunities for code re-use,and, where only a subset of the database resource man-agement interface is implemented, limits operating systemfunctionality.VINO [Small94], a new operating system under de-velopment at Harvard University, exploits this commonground between operating systems and database systems.In VINO, all resources are managed through a Univer-sal Resource Interface (URI). This interface is explicitlymodeled after the resource management techniques usedby database management systems. The VINO URI is im-plemented by a set of kernel modules called resource man-agers each of which manages access to a collection of ob-jects via a set of interface routines. This interface, whichis standardized by the URI, has functions to add or deleteobjects, to retrieve objects via an associative lookup onone or more keys, and to return modi�ed objects to theresource manager.The VINO URI also includes commands that can be2

used by the transaction service when beginning, commit-ting, and rolling back transactions. For example, ratherthan using careful write ordering [Ganger94] or a sepa-rate logging facility [Chutani92, Kazar90] to maintain theintegrity of �le system meta-data operations, VINO usesa general purpose transaction mechanism. The degree ofdurability conferred by the transaction mechanismmaybetailored to the requirements of the resource manager, in amanner similar to that used by QuickSilver [Schmuck91].4 Implementing a File SystemA traditional �le system exports an interface similar tothat of the universal resource interface. Thus, the �lesystem makes an excellent introductory example for un-derstanding the VINO URI.From the user's perspective, all �les are objects man-aged by a resource manager called \the �le system." Thecreat and unlink system calls correspond to adding anddeleting (respectively) a �le object. Reading a �le is anal-ogous to retrieving a �le (or a part of it) from the �lesystem for read access. A write operation acquires writeaccess to the �le and updates the �le object appropriately.Filenames serve as keys for referencing �les. A �le re-name operation performs a transaction in which the old�le is deleted, and a new �le (with the same contents buta di�erent name) is created. Since this happens in thecontext of a transaction, if the system fails during the re-name operation, the �le will either retain its old name,or have the new name, but it will be impossible to windup in a state where the �le has both names, or neither.While today's �le systems also provide this functionality,they do so using fairly complicated, special-purpose code.Because transactions are a fundamental part of theVINO model of resource management, the transaction fa-cility is available to user processes for insuring the in-tegrity �le data. This allows a uniform recovery mech-anism to be used by applications concerned about dataintegrity, such as word processors and source code controlsystems.Although the �le system has the outward appearance ofa single resource manager, it is actually implemented asseveral distinct but cooperating resource managers. The�le system namespace is implemented by the name man-ager, a resource manager that manages a collection of�les. File names are used to index the �les. File creationand deletion correspond to requesting an addition to ordeletion from the name manager. The open system call isimplemented by requesting a lookup from the name man-ager and returning the corresponding �le object, with readand/or write permission, as requested in the open call.Each �le is implemented by a �le manager, a resourcemanager that manages the set of disk blocks where the�le resides. The �le o�set is used as a key for retriev-

ing these blocks. Note that only one �le manager needbe implemented; individual �les are treated as separateinstances of this manager, reusing its code with the ap-propriate �le-speci�c data. Reading a �le is implementedby retrieving the blocks at the requested o�sets with readpermission. Writing a �le is implemented, by modifyingthe �le blocks at the appropriate o�sets.When a �le is extended, new blocks must be allocated toit. These blocks are added to the �le's �le manager. Thenew blocks are allocated from a storage manager, a re-source manager representing a disk partition. When a �leneeds to allocate new blocks, it requests the blocks fromthe storage manager where the �le resides. The blocksare not returned to the storage manager until the �le istruncated or deleted, preventing blocks from being simul-taneously allocated to more than one �le.The URI model also allows us to specify a protocol fordeciding when to grant shared or exclusive access to a�le (i.e., when to allow read and/or write system calls tooverlap). The UNIX Fast File System [McKusick84] doesnot permit shared access to �les; no more than one reador write request to a �le is serviced at a time. Clearly aone writer, multiple reader policy would permit greater�le throughput. This more complicated form of lockingis rarely implemented for �le systems, however, since thegains in concurrency are not enough to warrant the e�ortof implementing it. The general-purpose resource man-agement provided by the VINO URI allows code to beeasily shared between resource managers. Thus, it is onlynecessary to implement one solution to the readers andwriters problem, which can then be used for managingany resource where this model of shared access is appro-priate.The division of the �le system into separate resourcemanagers also allows a variety of locking and concurrencymanagement schemes. The name manager can be usedto prevent conicting read and write operations on thegranularity of entire �les. This would prevent an applica-tion from reading any part of a �le that was concurrentlybeing written to. If decisions about shared access are leftto the �le manager, concurrency can be handled on thegranularity of individual disk blocks.5 Related WorkVINO borrows from both the database and operating sys-tem communities for its design. The Plan 9 operating sys-tem [Pres90] has a common interface for accessing mostservices. This interface is based on the �le system inter-face found in other operating systems, and is not explicitlydesigned to provide resource management.QuickSilver [Schmuck91] is a microkernel operating sys-tem that uses transactions as a fundamental primitive,however they do not extend the use of this transaction3

mechanism to applications.There are a number of �le systems [Chutani92,Chang90] that have incorporated logging to insure theintegrity of their meta-data. Unfortunately these �le sys-tems do not export this transaction mechanism to userapplications, or to other parts of the operating systemkernel, which are therefore forced to implement their ownrecovery mechanisms.Inversion [Olson93] is a �le system built on top of thePOSTGRES [Stone87] database management system. In-version provides a transaction-based recovery mechanismfor �le data as well as for �le system meta-data. It alsoallows users to de�ne new �les types and functions for op-erating on them. Users of Inversion can use the underlyingdatabase to issue queries on the �le system's contents andmeta-data.VINO is not unique in separating naming from the �lestorage service. The Amoeba operating system [Mullen90]also divides traditional �le system functionality alongthese lines, providing a directory service that maps namesto capabilities for �le objects. The �le objects are man-aged by a separate service called the bullet service.6 ConclusionTraditional databases and operating systems use a vari-ety of similar techniques for solving resource managementproblems. Over time, databases have evolved a uniformmodel for manipulating the range of resources they needto manage. Operating systems, in contrast, still use avariety of ad hoc mechanisms and interfaces for resourcemanagement. We feel that the access method model forresource management developed for use in databases isalso appropriate for operating system resource manage-ment.The VINO operating system is designed to explorethis common ground between operating systems anddatabases. The VINO Universal Resource Interface pro-vides a uniform interface for resource management mod-eled after the access methods used by databases.References[Bern81] Philip A. Bernstein, Nathan Good-man, \Concurrency Control in DistributedDatabase Systems," ACM Computing Sur-veys, Vol. 13, No. 2, June 1981, pp. 185{221.[Chang90] Chang, A., Mergen, M., Rader, R.,Roberts, J., Porter, S., \Evolution of stor-age facilities in AIX Version 3 for RISCSystem/6000 processors," IBM Journal of

Research and Development, Vol. 34, No. 1,January 1990.[Chou85] Chou, Hong-Tai, DeWitt, David, \An Eval-uation of Bu�er Management Strategies forRelational Database Systems," Proceedingsof the Eleventh International Conferenceon Very Large Database, August 1985, pp.127{141.[Chutani92] Chutani, S., Anderson, O., Kazar, M., Lev-erett, B., Mason, W., Sidebotham, R.,\The Episode File System," Proceedings ofthe 1992 Winter Usenix Conference, SanFrancisco, CA, January 1992.[Ganger94] Ganger, G., Patt, Y., \Metadata UpdatePerformance in File Systems," Proceedingsof the First Usenix Symposium on Oper-ating System Design and Implementation,Monterey, CA, November, 1994, pp. 49{60.[Gray76] Gray, J., Lorie, R., Putzolu, F., andTraiger, I., \Granularity of locks and de-grees of consistency in a large shareddata base," Modeling in Data Base Man-agement Systems, Elsevier North Holland,New York, 365{394.[Gray78] Gray, J., \Notes on Database OperatingSystems|An Advanced Course," SpringerVerlag Lecture Notes in Computer Science,Volumne 60 1978.[Gray93] Gray, J., Reuter, A., Transaction Pro-cessing: Concepts and Techniques, MorganKaufmann Publishers, San Francisco CA,1993.[Kazar90] Kazar, M., Leverett, B., Anderson, O.,Vasilis, A., Bottos, B., Chutani, S., Ev-erhart, C., Mason, A., Tu, S., Zayas,E., \DECorum File System ArchitecturalOverview," Proceedings of the 1990 Sum-mer Usenix, Anaheim, CA, June 1990, pp.151{164.[McKusick84] Marshall Kirk McKusick, William Joy,Sam Le�er, and R. S. Fabry, \A Fast FileSystem for UNIX," ACM Transactions onComputer Systems, Vol. 2, No. 3, August1984, pp. 181{197.[Mullen90] Sape J. Mullender, Guido van Rossum, An-drew S. Tannenbaum, Robbert van Re-nesse, and Hans van Staveren, \Amoeba|A Distributed Operating System for the1990s," IEEE Computer,May 1990, pp. 44{53.4

[Olson93] Michael A. Olson, \The Design and Imple-mentation of the Inversion File System,"Proceedings of the 1993 Winter UsenixConference, San Diego, CA, January 1993,pp. 205{217.[Ouster89] Ousterhout, J., Douglis, F., \Beating theI/O Bottleneck: A Case for Log-structuredFile Systems," Operating Systems Review23, 1, January 1989, 11{27.[Pres90] Presotto, D., Pike, R., Trickey, H., andThompson, K., \Plan 9, a Distributed Sys-tem," Proceedings of the Spring 1991 Eu-rOpen Conference, Many 1991.[Schmuck91] Frank Schmuck, Jim Wyllie, \Experienceswith Transactions in QuickSilver," Proceed-ings of the 13th Symposium on OperatingSystem Principles, Paci�c Grove, CA, Oc-tober 1991.[Small94] Chris Small, Margo Seltzer, \VINO: AnIntegrated Platform for Operating Systemand Database Research," Harvard Com-puter Science Technical Report TR-30-94,1994.[Stone81] Michael Stonebraker, \Operating SystemSupport for Database Management," Com-munications of the ACM, Vol. 24, No. 7,July 1981, pp 412{418.[Stone87] Michael Stonebraker, \The Design of thePOSTGRES Storage System," Proceed-ings 13th International Conference on VeryLarge Data Bases, Brighton, England,September 1987, pp. 289{300.
5

